论文部分内容阅读
传统的稀疏编码方法在遇到大规模数据时,因计算复杂度高而出现异常。针对这种异常导致不能很好地进行特征提取的问题,提出正则化双阶线性稀疏编码DLRSC(Double Linear Regularization Sparse Coding)方法。借助于广义多特征子空间框架来学习噪声和异常像素的结构特征,通过使用L1球理论,计算出唯一的近似解,并且利用滤波技巧避免了大规模数据的复杂计算,从而降低了时间及空间复杂度。最后,在ORL及Yale两大通用人脸数据库上的实验验证了所提的DLRSC方法的有效性,实验结果