论文部分内容阅读
在小天体探测、导弹制导和战场侦察等航空航天领域,由于目标信号较弱,占有像素数少,缺少目标形状和纹理信息,使用手工特征提取的传统算法容易出现大量虚警,而拥有强大特征提取能力的深度学习算法无法对微小且缺乏轮廓信息的目标训练。本文采用了滑动窗口取样训练,它源自基于人类视觉特性的传统目标检测算法中嵌套结构的思想,设计了一种使用递归卷积层的全卷积网络,在不增加额外训练参数的情况下,扩展了模型的网络深度,该网络的并行卷积结构的多个分支网络模拟了传统算法的多尺度操作,有利于在复杂环境中增强目标和背景之间的对比度,