论文部分内容阅读
目的
开发一种能够自动分辨前列腺多序列MR图像的人工智能(AI)工具。
方法回顾性分析2017年5月至2018年12月华中科技大学同济医学院附属同济医院前列腺多序列MR图像。前列腺多序列MR图像的分类由ResNet18卷积神经网络(CNN)模型来实现。运用深度残差网络提升训练精度和测试精度。所使用的数据集包括19 146张7个前列腺MR序列图像(横断面T1WI、横断面T2WI、冠状面T2WI、矢状面T2WI、横断面DWI、横断面ADC、横断面PWI),选取其中2 800张图像作为训练集,选取剩余图像中的388张图像作为测试集。采用准确度评价ResNet18 CNN模型的效能。
结果7个前列腺MR序列(横断面DWI、冠状面T2WI、横断面灌注成像、矢状面T2WI、横断面ADC、横断面T1WI和横断面T2WI)图像测试准确率分别为100.0%(44/44)、77.5%(31/40)、96.7%(116/120)、100.0%(44/44)、100.0%(44/44)、100.0%(52/52)和100.0%(44/44)。横断面PWI的分类0.8%(1/120)被错误地分到了横断面T2WI序列,仅2.5%(3/120)错误地分到矢状面T2WI序列;对于冠状面T2WI的分类15.0%(6/40)被错误地分到了横断面T2WI序列,7.5%(3/40)错误地分到矢状面T2WI序列。
结论开发的能够自动分辨前列腺多序列MR图像的AI工具准确率高。