论文部分内容阅读
本文采用红外LEDs和CMOS图像传感器获取人脸图像和眼睛候选区域,再用支撑向量机(SVM)眼睛分类器验证并确定眼睛的位置,完成对驾驶员眼睛的准确定位;在眼睛的跟踪上,针对Kalman滤波和Mean Shift理论本身的缺陷,提出Kalman滤波和Mean Shift相结合的跟踪算法,不仅提高了跟踪的效率和跟踪的鲁棒性,还实现了模板的自动更新。