论文部分内容阅读
针对层次聚类算法存在复杂度高、准确度低等问题,提出了一种基于最大生成树的社团划分算法。该算法重新定义了节点间相似度,并利用最大生成树进行初始聚类,然后根据社团相似度合并局部社团得到最终划分结果。算法不仅降低了时间复杂度,而且在划分社团的准确度方面有所提高。将该方法在真实网络与人工网络上进行验证和比对,实验结果表明基于最大生成树的社团划分算法能够快速、准确地划分出网络中的社团结构。