论文部分内容阅读
本文从群点的平均中心概念出发,引进了关于不在一直线上三点的三角坐标系,从而提出了证明共线点的一种新方法,并以此为工具,重点探讨了垂心 H 的等截共轭点 H_2的一些性质.一.关于不在一直线上三点的三角坐标1°近世综合几何学上关于群点的平均中心是这样定义的:“平面上群点 A_i(i=1,2,…,n)(以下简称群点 A_i],α_i(i=1,2,…n)为各点的相应倍数.连 A_1A_2,于 A_1A_2或其延长线
Starting from the average center concept of group points, this paper introduces the triangular coordinate system that is not on the straight line three points, and presents a new method to prove collinear points. With this tool as the focus, Some Properties of the Conjugation Point H_2 I. About the Triangular Coordinates Not Located in a Line at Three Points 1 ° The average center of a group point in a near-term synthesis geometry is defined as follows: "The group point A_i (i = 1, 2, ..., n) (hereinafter referred to as group point A_i), α_i (i = 1,2, ... n) for the corresponding multiples of each point, even A_1A_2, A_1A_2 or its extension line