论文部分内容阅读
针对传统DCNN(Deep Convolutional Neural Networks)模型中Softmax分类层存在的过早饱和及模型参数采用随机初始化训练时间长、识别准确率低的问题,提出一种将噪声注入Softmax并结合迁移学习的图像分类方法.首先,根据对Softmax饱和问题探究,对比注入的噪声参数选取对识别率的影响来找到最佳情况,从而产生更为宽泛的梯度并起到延迟饱和的作用;然后,利用公开预训练模型参数来代替随机初始化参数,并比较冻结不同卷积层对模型的影响;最后,在MNIST和CIFAR-10图