Carbon nanotube supported PtOx nanoparticles with hybrid chemical states for efficient hydrogen evol

来源 :能源化学 | 被引量 : 0次 | 上传用户:xulei25163974
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
Efficient electrocatalysts for hydrogen evolution reaction (HER) in alkaline solution are highly required for water splitting.Here we design an ultra-small PtOx nanopatticle with hybrid Pt chemical states on carbon nanotubes as highly efficient alkaline HER catalyst,which shows a low overpotential of 19.4 mV at 10 mA cm-2,a high mass activity of 5.56 A mg-1Pt at 0.1 V,and a stable durability for at least 20 h.The HER performance is better than that of the benchmark 20 wt% Pt/C while the Pt content in the catalyst is only about one tenth of that in Pt/C.It also represents one of the best catalysts ever reported for HER in alkaline solution.Synchrotron radiation X-ray absorption spectroscopy reveals that the efficient and stable alkaline HER performance can be attributed to the favorable design of hybrid chemical states of Pt with carbon nanotubes,which exhibits abundant surface Pt-O as active catalytic sites and forms stable Pt-C interfacial interaction to both anchor the NPs and improve the synergistic effect between catalyst and substrate.
其他文献
Uniform lithium(Li)deposition in all-solid-state Li metal batteries is greatly influenced by the anode/electrolyte interface.Herein,a Mg-modified interface was
Lithium metal is one of the most promising anode materials for next-generation electrochemical energy storage due to low electrochemical potential and high spec
Defect passivation is one of the most important strategies to boost both the efficiency and stability of per-ovskite solar cells(PSCs).Here,nontoxic and sustain
The demand for efficient and environmentally-benign electrocatalysts that help availably harness the renewable energy resources is growing rapidly. In recent years, increasing insights into the design of water electrolysers, fuel cells, and metal–air batt
Lithium-sulfur (Li-S) batteries have been considered as one of the most promising candidates to traditional lithium ion batteries due to its low cost,high theor
Sodium-ion capacitors(SICs)are extremely promising due to the combined merits of high energy-power characteristics and considerable price advantage.However,it i
Aluminum batteries are attractive in electrochemical energy storage due to high energy density and lowcost aluminum,while the energy density is limited for the lack of favorable positive electrode materials to match aluminum negative electrodes.Tellurium
Lithium (Li) metal anodes with the high theoretical specific capacity (3860 mAh g-1) and most negative reduction potential (-3.04 V vs.standard hydrogen electro
Rechargeable aqueous zinc ion battery (RAZIB) is a promising energy storage system due to its high safety,and high capacity.Among them,manganese oxides with low
Transition metal compound(TMC)/carbon hybrids,as prospering electrocatalyst,have attracted great attention in the field of oxygen reduction reaction(ORR).Their