论文部分内容阅读
提出了基于最小二乘支持向量机(LS-SVMs)建模的混沌系统控制方法.与前向神经网络相比,LS-SVMs的优点是其训练过程遵循结构风险最小化原则,不易发生过拟合现象;它通过解一组线性方程组可得到全局惟一的最优解;LS-SVMs的拓扑结构在训练结束时自动获得而不需要预先确定.该方法不需要被控混沌系统的解析模型,且当测量噪声存在情况下控制仍然有效.以一维和二维非线性映射为例进行数值仿真,表明该方法是有效和可行的.