转录因子介导乙烯调控番茄果实成熟的研究进展

来源 :安徽农业科学 | 被引量 : 0次 | 上传用户:boshi9529
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  摘要 番茄果实成熟过程既是一个复杂又是一个高度有序的过程,该过程还受多种因子调控。主要综述了MADS-box转录因子、NAC转录因子、AP2/ERF转录因子、SBP/SPL转录因子和其他转录因子介导乙烯调控番茄果实成熟的研究进展,为进一步完善转录因子介导乙烯参与番茄果实成熟的转录调控网络提供理论参考。
  关键词 番茄;转录因子;乙烯;果实成熟
  中图分类号 S 641.2  文献标识码 A  文章编号 0517-6611(2021)16-0016-03
  doi:10.3969/j.issn.0517-6611.2021.16.005   开放科学(资源服务)标识码(OSID):
  Research Progress on Transcription Factor-Mediated Ethylene Regulation of Tomato Fruit Ripening
  KANG Jing
  (School of Biological Engineering, Chongqing University,Chongqing 400044)
  Abstract The tomato fruit ripening process is both a complex and highly ordered process, which is also regulated by many factors.This article mainly summarizes the research progress of MADS-box transcription factor, NAC transcription factor, AP2/ERF transcription factor, SBP/SPL transcription factor and other transcription factors mediated ethylene regulation of tomato fruit ripening, in order to provide a theoretical reference for further perfecting the transcriptional regulatory network of transcription factor-mediated ethylene participation in tomato fruit ripening.
  Key words Tomato;Transcription factor;Ethylene;Fruit ripening
  番茄( Solanum lycopersicum )是一类比较重要的果蔬作物,含有丰富的营养物质。番茄属于呼吸跃变型果实,因其基因组小且信息全面、生命周期短、易种植、易转化等优点,已被作为研究肉质果实生长发育和成熟的模式植物[1]。
  番茄果實成熟过程既是一个复杂又是一个高度有序的过程,涉及颜色、质地、风味物质、有机物和芳香物质的变化。该过程还受多种因子调控,目前,转录因子(transcription factors)通过乙烯途径调控果实成熟的研究越来越多。因此,探讨这些转录因子的功能及其与乙烯之间的相互关系,全面解析转录因子介导乙烯参与番茄果实成熟的转录调控机制,对培育出优质番茄果实品种具有重要的指导意义。笔者主要对近年来转录因子和乙烯在果实成熟方面的功能研究进行简要综述。
  1 番茄果实成熟突变体
  转录因子在果实成熟方面的调控作用主要依赖于各种果实成熟突变体。MADS-RIN是从番茄 rin(ripening inhibitor) 突变体中克隆并鉴定得到的。 rin 是由于RIN与MADS-MC之间的一段基因缺失使2个基因首尾相连形成新的嵌合体导致基因功能失活而形成的突变体[2]。 rin 突变体中几乎所有的果实成熟现象均被抑制,包括果实变软、类胡萝卜素含量升高、乙烯产生及风味物质合成等[3]。
  与 rin  突变体不同的是, cnr(colorless non-ripening) 突变体不是因为基因缺失引起的,而是由于SBP家族转录因子CNR启动子甲基化导致的[4-5]。 cnr 突变体果实出现无色不成熟的表型,乙烯含量急剧下降[6]。说明CNR在番茄果实成熟中发挥重要的功能。
  nor(non-ripening) 突变体果实不能成熟,也不能产生跃变乙烯。 nor 突变体是由于NAC家族转录因子 NOR 基因的第3个外显子区域缺失了2个连续的碱基A而出现的移码突变,导致NOR蛋白质翻译提前终止形成186个氨基酸的截短蛋白[7]。即使过表达NOR也不能使 nor 突变体恢复成熟的表型,因此, nor 突变体不成熟的表型可能还受到其他因素的影响[8-9]。
  2 乙烯与番茄果实成熟
  乙烯主要是由ACS(ACC合成酶)和ACO(ACC氧化酶)经过两步反应催化生成[10]。番茄中与果实成熟相关的乙烯生物合成基因主要有 ACO1、ACS2、ACS4、ACS6和ACO3 。乙烯是通过乙烯信号转导途径发挥生物学效应的。目前公认的模型是细胞膜上的乙烯受体ETRs感知乙烯信号,通过释放CTR1(CONSTITUTIVE TRIPLE RESPONSE 1)对EIN2(ETHYLENE INSENSITIVE2)施加的阻滞而启动转录级联反应,激活初级转录因子EIN3(ETHYLENE INSENSITIVE 3)/EIL1(EIN3/EIN3-like)和次级转录因子ERFs(ethylene response factors)的表达。乙烯信号转导途径最终的结果是EIN3/EILs和ERFs对下游靶基因的转录调控。番茄中存在7个乙烯受体基因, SlETR3、SlETR4和SlETR6 在果实成熟前期达到峰值,能对乙烯产生最大响应; SlETR1、SlETR2、SlETR5和SlETR7 则在果实成熟后期表达,不受乙烯或受乙烯诱导最少[11-12]。乙烯受体下游是CTR家族基因,番茄中 SlCTR1和SlCTR2 在番茄果实成熟中具有重要作用[13-14]。EIN2能够正向调控果实成熟过程中的乙烯响应[15]。EIN2下游是EIN3/EILs和ERFs转录因子。番茄中发现了6种EIL转录因子(SlEIL1~6),其中SlEIL1~4可以调控某些果实成熟相关基因[16]。乙烯信号转导的末端是ERFs转录因子,这类转录因子在果实成熟过程也表现出了重要的调控作用。   3 转录因子通过乙烯途径调控番茄果实成熟
  3.1 MADS-box转录因子
  RIN是从番茄 rin 突变体中鉴定得到的MADS-box转录因子。有研究表明,在突变体 rin 中转入活性RIN,番茄果实可以成熟,但是在野生型番茄中抑制RIN,番茄果实还是出现不成熟的表型[17]。这些结果说明RIN是番茄果实成熟特异的调控因子。大量的ChIP-chip/ChIP-Seq结果表明,很多乙烯合成及响应的相关基因均为RIN的靶基因[2,18-21],这为RIN介导乙烯调控果实成熟提供了直接证据。TAGL1的沉默导致乙烯合成受到抑制,同时发现乙烯合成基因、番茄红素合成基因及细胞壁降解基因表达下调[22],说明TAGL1能通过乙烯途径调控番茄果实成熟。FUL1(又叫TDR4)与FUL2(又叫MBP7)表现出功能冗余。FUL1/2沉默的绿果中乙烯含量显著降低,证明FUL1和FUL2参与乙烯生物合成[23]。此外,FUL1和FUL2能与RIN相互作用[24]。
  3.2 NAC转录因子
  番茄中至少有101种NAC转录因子,但目前只有NOR、SlNAC1、SlNAC4、SNAC4和SNAC9参与番茄果实成熟的调控[8,25-27]。 nor 突变体果实成熟受抑制主要表现在果实完全不成熟、乙烯产生和色素积累缺陷[28-29];同样地, NOR 基因敲除的果实也表现出部分不成熟的表型[30]。因此,NOR以重要的角色参与番茄果实成熟过程。SlNAC1的沉默延迟了番茄果实成熟,总类胡萝卜素(包括番茄红素)及乙烯含量却比较高;SlNAC1过表达的果实中以上各个指标均呈现相反的结果。此外,SlNAC1能调控其下游的乙烯合成相关基因( ACO1、ACS2和ACS4 )的表达,说明SlNAC1通过负调控乙烯参与番茄果实颜色的转变[27,31]。SlNAC4在果实成熟起始阶段表达量较高,SlNAC4的表达被抑制导致果实成熟进程也被抑制,类胡萝卜素和乙烯含量均处于较低的水平,乙烯合成相关基因( ACO1、ACO3、ACS2和ACS4 )表达显著下调。相对于野生型番茄,SlNAC4在 rin 突变体果实中的表达没有变化,但RIN的转录水平在SlNAC4-RNAi果实中显著下降[26],说明SlNAC4可能在RIN的上游调控番茄果实成熟。有研究表明,SNAC4和SNAC9也可通过对乙烯的调控进而实现对番茄果实成熟的调控[27]。
  3.3 AP2/ERF转录因子
  AP2/ERF转录因子因含有保守的AP2/ERF 结构域而得名。目前在番茄中发现了5个基因( SlAP2a~e),但只有SlAP2a 表现出果实成熟特性,沉默 SlAP2a 果实表现出橙红色,软化提前,乙烯含量显著升高,说明 SlAP2a 负调控乙烯合成进而影响番茄果实成熟。此外,RIN、NOR和CNR作用于 SlAP2a 的上游并调控其表达,但CNR转录水平在 SlAP2a -RNAi果实中升高,说明在番茄果实成熟过程中, SlAP2a和 CNR构成了负反馈调控回路[32]。以上结果表明,SlAP2a 能通过平衡多种调控因子,调控复杂的番茄果实成熟过程。
  ERF基因参与果实成熟一直备受关注,番茄中存在77个ERF转录因子,但目前报道的与果实成熟相关的ERF转录因子相对较少[33]。番茄LeERF1过表达植株表现出组成型乙烯响应的表型,番茄果实成熟和软化加快,而LeERF1表达受到抑制,番茄果实成熟进程也相应地变慢[34]。LeERF2是一个受乙烯诱导的转录因子,LeERF2又能反过来影响乙烯合成[35]。同样地,SlERF6也是一个果实成熟特异的转录因子,负调控番茄果实成熟[36]。近年来发现SlERF.B3(又叫LeERF4)能够调控多个基因的表达,例如果实成熟相关基因及某些ERF家族成员的表达,ERF.B3-SRDX果实颜色表现为橙红色,番茄红素含量较低,但是乙烯含量却呈现上升趋势,可能是由于乙烯合成基因表达上调所致,ERF.B3-SRDX对乙烯敏感性高表明SlERF.B3反馈调节乙烯的合成和响应[37-38]。
  3.4 SBP/SPL转录因子
  CNR属于SBP/SPL家族成员,其启动子甲基化导致 cnr 突变体果实表现为无色、乙烯含量大大降低的表型[5,39],即使施加外源乙烯也不能使突变体的表型恢复至野生型。CNR启动子甲基化不仅抑制其与RIN的结合活性[18],也抑制了RIN与其他基因的结合活性[20],而 rin 中CNR的表达水平也很低,以上结果暗示CNR应该在RIN的下游发挥作用[5]。另外,其他的SBP/SPL转录因子也可能参与调控番茄果实发育与成熟[40]。
  3.5 其他转录因子
  其他转录因子如HB-1也参与果实成熟的调控。LeHB-1是一种HD-zip同源异型蛋白,可直接与 ACO1相互作用,LeHB-1基因的抑制会导致ACO1 表达降低,乙烯合成减少,延迟果实成熟[41]。
  4 展望
  番茄果实成熟是一个复杂而又高度协调有序的过程,各类转录因子介导乙烯调控番茄果实成熟的机理仍是目前研究的重点和难点。因此,继续挖掘番茄果实成熟相关转录因子并探究这些转錄因子的功能及其与乙烯之间的关系,完善转录因子介导乙烯参与番茄果实成熟的转录调控网络,对于从分子水平上改良番茄品种具有重要的指导意义。
  参考文献
  [1] KLEE H J,GIOVANNONI J J.Genetics and control of tomato fruit ripening and quality attributes[J].Annu Rev Genet,2011,45:41-59.
  [2] FUJISAWA M,SHIMA Y,HIGUCHI N,et al.Direct targets of the tomato-ripening regulator RIN identified by transcriptome and chromatin immunoprecipitation analyses[J].Planta,2012,235(6):1107-1122.   [3] VREBALOV J,RUEZINSKY D,PADMANABHAN V,et al.A MADS-box gene necessary for fruit ripening at the tomato  ripening-inhibitor(rin)  locus[J].Science,2002,296(5566):343-346.
  [4] CHEN W W,KONG J H,QIN C,et al.Requirement of  CHROMOMETHYLASE3  for somatic inheritance of the spontaneous tomato epimutation  Colourless non-ripening [J].Sci Rep,2015,5(1):881-894.
  [5] MANNING K,T R M,POOLE M,et al.A naturally occurring epigenetic mutation in a gene encoding an SBP-box transcription factor inhibits tomato fruit ripening[J].Nat Genet,2006,38(8):948-952.
  [6] WANG R F,DA ROCHA TAVANO E C,LAMMERS M,et al.Re-evaluation of transcription factor function in tomato fruit development and ripening with CRISPR/Cas9-mutagenesis[J].Sci Rep,2019,9(1):4527-4541.
  [7] LINCOLN J E,FISCHER R L.Regulation of gene expression by ethylene in wild-type and rin tomato( Lycopersicon esculentum )fruit[J].Plant Physiol,1988,88(2):370-374.
  [8] GAO Y,WEI W,FAN Z Q,et al.Re-evaluation of the  nor  mutation and the role of the NAC-NOR transcription factor in tomato fruit ripening[J].J Exp Bot,2020,71(12):3560-3574.
  [9] GIOVANNONI J J,NOENSIE E N,RUEZINSKY D M,et al.Molecular genetic analysis of the ripening-inhibitor and non-ripening loci of tomato:A first step in genetic map-based cloning of fruit ripening genes[J].Mol Gen Genet,1995,248(2):195-206.
  [10] NAKATSUKA A,MURACHI S,OKUNISHI H,et al.Differential expression and internal feedback regulation of 1-aminocyclopropane-1-carboxylate synthase,1-aminocyclopropane-1-carboxylate oxidase,and ethylene receptor genes in tomato fruit during development and ripening[J].Plant Physiol,1998,118(4):1295-1305.
  [11] CHEN Y,HU G J,RODRIGUEZ C,et al.Roles of SlETR7,a newly discovered ethylene receptor,in tomato plant and fruit development[J].Hortic Res,2020,7(1):405-425.
  [12] KEVANY B M,TIEMAN D M,TAYLOR M G,et al.Ethylene receptor degradation controls the timing of ripening in tomato fruit[J].Plant J,2007,51(3):458-467.
  [13] LIN Z F,ALEXANDER L,HACKETT R,et al.LeCTR2,a CTR1-like protein kinase from tomato,plays a role in ethylene signalling,development and defence[J].Plant J,2008,54(6):1083-1093.
  [14] LECLERCQ J,ADAMS-PHILLIPS L C,ZEGZOUTI H,et al. LeCTR1 ,a tomato  CTR1 -like gene,demonstrates ethylene signaling ability in  Arabidopsis  and novel expression patterns in tomato[J].Plant Physiol,2002,130(3):1132-1142.   [15] ALONSO J M,HIRAYAMA T,ROMAN G,et al.EIN2,a bifunctional transducer of ethylene and stress responses in  Arabidopsis [J].Science,1999,284(5423):2148-2152.
  [16] LIU M,PIRRELLO J,CHERVIN C,et al.Ethylene control of fruit ripening:Revisiting the complex network of transcriptional regulation[J].Plant Physiol,2015,169(4):2380-2390.
  [17] MOORE S,VREBALOV J,PAYTON P,et al.Use of genomics tools to isolate key ripening genes and analyse fruit maturation in tomato[J].J Exp Bot,2002,53(377):2023-2030.
  [18] ZHONG S L,FEI Z J,CHEN Y R,et al.Single-base resolution methylomes of tomato fruit development reveal epigenome modifications associated with ripening[J].Nat Biotechnol,2013,31(2):154-159.
  [19] FUJISAWA M,NAKANO T,SHIMA Y,et al.A large-scale identification of direct targets of the tomato MADS box transcription factor RIPENING INHIBITOR reveals the regulation of fruit ripening[J].Plant Cell,2013,25(2):371-386.
  [20] MARTEL C,VREBALOV J,TAFELMEYER P,et al.The tomato MADS-box transcription factor RIPENING INHIBITOR interacts with promoters involved in numerous ripening processes in a COLORLESS NONRIPENING-dependent manner[J].Plant Physiol,2011,157(3):1568-1579.
  [21] ITO Y,KITAGAWA M,IHASHI N,et al.DNA-binding specificity,transcriptional activation potential,and the rin mutation effect for the tomato fruit-ripening regulator RIN[J].Plant J,2008,55(2):212-223.
  [22] GIM NEZ E,DOMINGUEZ E,PINEDA B,et al.Transcriptional activity of the MADS box  ARLEQUIN/TOMATO AGAMOUS-LIKE1  gene is required for cuticle development of tomato fruit[J].Plant Physiol,2015,168(3):1036-1048.
  [23] SHIMA Y,FUJISAWA M,KITAGAWA M,et al.Tomato  FRUITFULL  homologs regulate fruit ripening via ethylene biosynthesis[J].Biosci Biotechnol Biochem,2014,78(2):231-237.
  [24] SHIMA Y,KITAGAWA M,FUJISAWA M,et al.Tomato FRUITFULL homologues act in fruit ripening via forming MADS-box transcription factor complexes with RIN[J].Plant Mol Biol,2013,82(4/5):427-438.
  [25] KOU X H,LIU C,HAN L H,et al.NAC transcription factors play an important role in ethylene biosynthesis,reception and signaling of tomato fruit ripening[J].Mol Genet Genomics,2016,291(3):1205-1217.
  [26] ZHU M K,CHEN G P,ZHOU S,et al.A new tomato NAC(NAM/ATAF1/2/CUC2) transcription factor,SlNAC4,functions as a positive regulator of fruit ripening and carotenoid accumulation[J].Plant Cell Physiol,2014,55(1):119-135.
  [27] MENG C,YANG D Y,MA X C,et al.Suppression of tomato  SlNAC1  transcription factor delays fruit ripening[J].J Plant Physiol,2016,193:88-96.   [28] GIOVANNONI J J.Fruit ripening mutants yield insights into ripening control[J].Curr Opin Plant Biol,2007,10(3):283-289.
  [29] GIOVANNONI J J.Genetic regulation of fruit development and ripening[J].Plant Cell,2004,16(S1):S170-S180.
  [30] GAO Y,ZHU N,ZHU X F,et al.Diversity and redundancy of the ripening regulatory networks revealed by the fruitENCODE and the new CRISPR/Cas9  CNR  and  NOR  mutants[J].Hortic Res,2019,6(1):207-228.
  [31] MA N N,FENG H L,MENG X,et al.Overexpression of tomato SlNAC1 transcription factor alters fruit pigmentation and softening[J].BMC Plant Biol,2014,14:1-14.
  [32] KARLOVA R,ROSIN F M,BUSSCHER-LANGE J,et al.Transcriptome and metabolite profiling show that APETALA2a is a major regulator of tomato fruit ripening[J].Plant Cell,2011,23(3):923-941.
  [33] LIU M C,GOMES B L,MILA I,et al.Comprehensive profiling of ethylene response factor expression identifies ripening-associated  ERF  genes and their link to ley regulators of fruit ripening in tomato[J].Plant Physiol,2016,170(3):1732-1744.
  [34] LI Y C,ZHU B Z,XU W T,et al. LeERF1  positively modulated ethylene triple response on etiolated seedling,plant development and fruit ripening and softening in tomato[J].Plant Cell Rep,2007,26(11):1999-2008.
  [35] ZHANG Z J,ZHANG H W,QUAN R D,et al.Transcriptional regulation of the ethylene response factor LeERF2 in the expression of ethylene biosynthesis genes controls ethylene production in tomato and tobacco[J].Plant Physiol,2009,150(1):365-377.
  [36] LEE J M,JOUNG J G,MCQUINN R,et al.Combined transcriptome,genetic diversity and metabolite profiling in tomato fruit reveals that the ethylene response factor  SlERF6  plays an important role in ripening and carotenoid accumulation[J].Plant J,2012,70(2):191-204.
  [37] LIU M C,DIRETTO G,PIRRELLO J,et al.The chimeric repressor version of an  Ethylene Response Factor(ERF)  family member, Sl-ERF.B3 ,shows contrasting effects on tomato fruit ripening[J].New Phytol,2014,203(1):206-218.
  [38] LIU M C,PIRRELLO J,KESARI R,et al.A dominant repressor version of the tomato  Sl-ERF.B3  gene confers ethylene hypersensitivity via feedback regulation of ethylene signaling and response components[J].Plant J,2013,76(3):406-419.
  [39] THOMPSON A J,TOR M,BARRY C S,et al.Molecular and genetic characterization of a novel pleiotropic tomato-ripening mutant[J].Plant Physiol,1999,120(2):383-390.
  [40] SALINAS M,XING S P,H HMANN S,et al.Genomic organization,phylogenetic comparison and differential expression of the SBP-box family of transcription factors in tomato[J].Planta,2012,235(6):1171-1184.
  [41] LIN Z F,HONG Y G,YIN M G,et al.A tomato HD-Zip homeobox protein,LeHB-1,plays an important role in floral organogenesis and ripening[J].Plant J,2008,55(2):301-310.
其他文献
总结郭志强教授“以通立法”论治盆腔炎性疾病后遗慢性盆腔痛的经验.认为该病属实证居多,主要病机为气滞、寒湿、瘀血积聚胞宫,导致胞脉闭阻,不通则痛.临证“以通立法”,标本
目的 观察针刺联合化风丹治疗风寒型周围性面瘫的临床疗效和安全性.方法 将74例风寒型周围性面瘫患者随机分为针刺组与针药组各37例.两组均给予常规针刺治疗,针药组在针刺基
试将中医外科学疡科理论引入肿瘤学,探究疮疡理论对肿瘤辨治应用的临床意义.基于概念的考证,结合中医学对肿瘤微环境的认识及肿瘤转移与疮疡护场理论的关系,从病因病机、病证
维持血糖稳态对于糖尿病及其并发症的治疗有着重要意义.胰岛β细胞功能障碍是2型糖尿病患者自身血糖调节机制减弱,出现波动性高血糖的重要机理.胰岛β细胞内膜系统是胰岛β细
玄府为三焦通行元气、运化水谷、运化水液的通道,玄府的开阖通利、津液的盈亏布散与鱼鳞病的发生关系密切.认为玄府郁闭是鱼鳞病的重要病机之一,临证从玄府理论出发,运用疏通
摘要 在我国,玉米的种植面积和产量均超过水稻和小麦,成为第一大粮食作物。同时,玉米也是食品、饲料、化工原料等重要原材料。因此,利用分子标记辅助选择技术(molecular marker-assisted selection,MAS)与常规育种相结合来获得高产、优质、抗逆性强的玉米品种具有重要的意义。概述了常用的分子标记技术以及MAS在玉米抗病和抗虫育种中的应用,同时分析了MAS的局限性,也展望了未
目的 掌握2019学年上学期上海市闵行区中小学因病缺课特征,为2020学年冬春季疾病防控提供参考.方法 通过因病缺课监测系统收集2019学年上学期中小学监测数据并进行描述分析,
目的 系统评价腰痛宁胶囊对比痹痛宁胶囊治疗腰椎骨性关节炎的有效性与安全性.方法 计算机检索PubMed、Embase、Cochrane图书馆、万方数据库、中国知网数据库和维普数据库,收
红豆杉是一味常用的中药材。近年来,国内外对其抗肿瘤活性成分及作用机制研究日趋活跃。目前认为红豆杉主要抗肿瘤成分为紫杉烷类、多糖类、黄酮类等。这些活性成分抗肿瘤机制不同,包括微管解聚机制、诱导肿瘤细胞凋亡、抑制新血管生成、干扰信号传导通路等多种机制共同作用抑制肿瘤细胞增殖。我们对红豆杉抗肿瘤活性成分和作用机制进行综述,以促进红豆杉在抗肿瘤研究中的开展及临床上更好的应用。
目的 通过数据挖掘的方法分析周平安治疗结缔组织病相关间质性肺病(CTD-ILD)的中药配伍规律.方法 收集2010年1月至2016年12月于北京中医药大学东方医院周平安门诊就诊的CTD-I