论文部分内容阅读
1900年当代著名的代数几何学家Frank. Morley(1860—1937)在《美国数学学会译丛》上发表了“平面n条直线的度量几何”一文,给出并证明了关于平面上n条直线的性质的一些相当一般的定理,作为这些定理的一个非常特殊的结果,即世人称谓的莫雷三等分定理(Morley Trisector Theorem)引起了过去80年来数学界的广泛注意,这是欧氏几何经过几千年的锤炼以后所能发现的为数极少的新的定理之一。莫雷三等分定理任意三角形OPQ的三个内角的相邻三等分角线的三个交点A、B、C组成一个正三角形。(如图一)
Frank Morley (1860–1937), a famous contemporary algebraic geometer in 1900, published the article “Measurement Geometry of Plane n Lines” in the “Translation Series of the American Mathematical Society”, which gives and proves that there are n straight lines in the plane. Some quite general theorems of the nature of the, as a very special result of these theorems, namely the Morley Tripartite Theorem of the world appellations have attracted extensive attention in the mathematical community for the past 80 years, which is the Euclidean geometry After one thousand years of tempering, one of the few new theorems can be found. Morley’s Third Equivalence Theorem Three intersection points A, B, and C of the three inner angles of the three inner angles of an arbitrary triangle OPQ form an equilateral triangle. (Figure 1)