论文部分内容阅读
基因诊断是近年来提高肺癌治愈率的一种新型且有效的方法,但这种方法存在基因检测时间长、费用高、侵入式取样损伤大的问题。文中提出了基于成对学习和图像聚类的无监督学习的肺癌亚型识别方法。首先,采用无监督卷积特征融合网络用于学习肺癌CT图像的深度表示,有效地捕捉被忽略的重要特征信息,并使用包含不同层次抽象信息的最终融合特征来表征肺癌亚型。然后,使用联合成对学习和图像聚类的分类学习框架进行建模,充分利用学习到的特征表示,确保有效的聚类学习,以取得更高的分类精度。最后,利用生存分析和基因分析对肺癌亚型进行多角度