论文部分内容阅读
Er3 +/Yb3 +-codoped oxyfluoride crystallite glass was prepared with melting technique. The compositions and the melting temperature and the annealing temperature of the rare earth-doped crystallite glass were studied in detail. The emission spectra of samples were measured with the Hitachi F-4500 fluorescent photometer pumped by 980 nm wavelength laser. The up-conversion luminescence mechanism was illuminated on the view of the photophysics. By measuring the relationship between luminescent intensity and pump power, it is confirmed that the emission peaks at 550 nm belong to two-photon process, while that at 665 nm belongs to three-photon process. Moreover, the distributions of crystalline were determined by SEM.
Er3 + / Yb3 + -codoped oxyfluoride crystallite glass was prepared with melting technique. The compositions and the melting temperature and the annealing temperature of the rare earth-doped crystallite glass were studied in detail. The emission spectra of samples were measured with the Hitachi F -4500 fluorescent photometer pumped by 980 nm wavelength laser. The up-conversion luminescence mechanism was illuminated on the view of the photophysics. By measuring the relationship between luminescent intensity and pump power, it is confirmed that the emission peaks at 550 nm belong to two -photon process, while that at 665 nm belongs to three-photon process. Moreover, the distributions of crystalline were determined by SEM.