论文部分内容阅读
由于弓速往往不是恒量(不断在变化),手与弓的重量放在弦上的压力也不是恒量,所以,以下的数字,只能是大概而又大概(所谓“模糊数学”),肯定不是绝对的,只能是方向性的。1.接触点与弓速力度不变,振动的弦段长度不变的条件下:弓速与弓弦接触点和琴码的距离大约成正比。如:每分钟80拍,中等强度,假设一拍一弓(全弓)时弓弦接触点离开琴码大约4厘米。则两拍一弓(全弓)时,弓弦接触点离开琴码约2厘米,
Because the bow speed is often not a constant (constantly changing), the weight of the hand and bow on the string pressure is not constant, so the following figures can only be approximate and approximate (the so-called “fuzzy mathematics”), Definitely not absolute, it can only be directional. 1. The contact point and bow speed constant, the vibration of the string length of the same conditions: bow speed and bowstring contact point and piano code about proportional to the distance. Such as: 80 beats per minute, medium intensity, assuming a bark (full bow) bowstring contact point about 4 cm away from the piano code. Then two beats a bow (all bow), the bowstring contact point away from the piano code about 2 cm,