Brazing of Ti2AlNb Based Alloy with Amorphous Ti-Cu-Zr-Ni Filler

来源 :武汉理工大学学报(材料科学版)(英文版) | 被引量 : 0次 | 上传用户:Xinigami
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
Amorphous Ti-Cu-Zr-Nifi ller foils with low melting point of 1 133 K were synthesized using a melt-spinning method in argon atmosphere. A Ti2AlNb based alloy was brazed at 1 153-1 223 K for 600-3 000 s. The effects of brazing temperature (Tb) and time (tb) on the shear strength of the joints were investigated. The results showed that the joint strength was signifi cantly affected by the reaction layer thickness. The optimum brazing parameters can be determined as follows:Tb=1 173 K, and tb=600 s. The maximum tensile strength of the joint obtained can reach 260 MPa. Furthermore, the activation energyQand the growth velocityA0 of the reaction layer in the brazed joints were calculated to be 161.742 kJ/mol and 0.213 m2/s, respectively. The growth of the reaction layer (y) could be expressed by the expression:y2 =0.213exp(?19 454/Tb)tb.
其他文献
The true stress-strain relationships of Ti-5Al-2Sn-2Zr-4Mo-4Cr(TC17) alloy with a wide range of strain rates were investigated by uniaxial quasi-static and dynamic compression tests, respectively. Quasi-static compression tests were carried out with Instr
Pure K2Ti4O9 whiskers were prepared by KDC (Kneading-Drying-Calcination) method with TiO2 and K2CO3 as raw materials. The influences of TiO2/K2CO3 molar ratio (RT/K), calcination temperature (TC) and cooling process on phase composition and morphology of
Six representative parent rocks of sand, including limestone, quartzite, gneisses, granite, Basalt and Marble were selected to conduct a systematical research on the effects of various lithologies of manufactured sand on the workability, mechanism propert
Loose sand particles could be cemented to sandstone by bio-cement (microbial induced magnesium carbonate). The bio-sandstone was firstly prepared, and then the compressive strength and the porosity of the sandstone cemented by microbial induced magnesium
Two types of solutions (ZnSO4, MgSO4) were selected to study the influence of mineral admixtures on the electro-deposition healing effect of concrete cracks. Four parameters (i e, rates of weight gain, surface coating, crack closure and crack filling dept
Carbon nanotubes (CNTs) were extensively explored for their beneficial use in nervous system tissue engineering. However, an important concern regarding the use of CNTs is their toxicity during the interaction between cells and the nano particles. The rat