论文部分内容阅读
讨论了Hopfield神经网络算法在优化计算中的应用,提出了一种暂态混沌神经网络模型,把混沌动力学与收敛动力学相结合,使网络逐渐由混沌神经网络向Hopfield网络过渡,达到控制混沌的目的,并且提供一个在全局最优解附近的初值,然后用Hopfield网络得到最优解,有效地解决了Hopfield网络的局部极值问题.仿真结果表明算法对于初始值是稳健的,并且具有很强的克服陷入局部极小能力.