论文部分内容阅读
提出了双评价粒子群优化算法.该算法可对迭代后的粒子进行位置和适应值的双评价,并可根据评价结果对适应值和位置不好的粒子进行柯西变异或者高斯变异,克服了标准粒子群优化算法因对迭代后粒子的优劣不进行评价而使部分粒子进行无意义的探索和开发的缺陷.实验结果表明改进的算法加快了粒子群的探索速度,提高了开发全局最优解的精度.