论文部分内容阅读
Centrifugal model testsare playing an increasingly importantrolein investigating slope characteristics under rainfall conditions. However, conventional electronic transducers usually fail during centrifugal model tests because of the impacts of limitedtest space, high centrifugal force, and presence of water, with the result that limited valid data is obtained. In this study, Fiber Bragg Grating(FBG) sensing technology is employed in the design and development of displacement gauge, an anchor force gauge and an anti-slide pile moment gauge for use on centrifugal model slopes with and without a retaining structure. The two model slopes were installed and monitored at a centrifugal acceleration of 100 g. The test results show that the sensors developed succeed in capturing the deformation and retaining structure mechanical response of the model slopes during and after rainfall. The deformation curvefor the slope without retaining structure shows a steepresponse that turns gradualfor the slope with retaining structure. Importantly, for the slope with the retaining structure, results suggest that more attention be paid to increase of anchor force and antislide pile moment during rainfall. This study verifies the effectiveness of FBG sensing technology in centrifuge research and presents a new and innovative method for slope model testing under rainfall conditions.
Centrifugal model testsare playing an increasingly importantrolein investigating slope characteristics under rainfall conditions. However, conventional electronic transducers usually fail during centrifugal model tests because of the impacts of limitedtest space, high centrifugal force, and presence of water, with the result that limited valid data is obtained in this study, Fiber Bragg Grating (FBG) sensing technology is employed in the design and development of displacement gauge, an anchor force gauge and an anti-slide pile moment gauge for use on centrifugal model slopes with and without a retaining structure. The two models slopes were installed and monitored at a centrifugal acceleration of 100 g. The test results show that the sensors did succeed in capturing the deformation and retaining structure mechanical response of the model slopes during and after rainfall. The deformation curve for the slope without retaining structure shows a steepresponse that turns gradualfor the Importantly, for the slope with the retaining structure, results suggest that more attention be paid to increase anchor force and antislide pile moment during rainfall. This study verifies the effectiveness of FBG sensing technology in centrifuge research and presents a new and innovative method for slope model testing under rainfall conditions.