论文部分内容阅读
不相关鉴别分析是一种非常有效并起着重要作用的线性鉴别分析方法,它能抽取出具有不相关性质的特征分量。但是,由于每一个鉴别矢量的得出都要求解一个特征方程,不相关鉴别分析算法一直是计算代价很大的算法,在需求解的鉴别矢量个数较多时尤其如此。该文基于一个等效的Fisher准则函数,提出了不相关鉴别分析的另一问题模型。使用Lagrange乘子法,可求出对应该问题模型的“不相关”鉴别矢量解的简洁的表示式。关于CENPARMI手写体阿拉伯数字库和ORL人脸图象库的实验表明,该文提出的不相关鉴别分析改进算法计算效率较原算法