论文部分内容阅读
为提高抽水蓄能调节系统仿真中水泵水轮机模型精度,提出了一种集成PSO_BP神经网络模型来描述水泵水轮机全特性。首先利用改进Suter变换对水泵水轮机全特性进行处理得到样本数据,然后采用PSO算法优化BP神经网络的初始权值和阈值,反复训练出若干个PSO_BP神经网络,最后将单个PSO_BP网络作为自适应Boosting集成算法的弱学习器,最终构建出水泵水轮机的集成神经网络模型。计算结果表明,与单个BP网络模型相比,该模型具有更好的拟合精度及泛化性能,为进一步研究抽水蓄能调节系统性能奠定了基础。