论文部分内容阅读
当目标领域缺少足够多的标注数据时,迁移学习利用相关源领域的标注数据,辅助提升目标域的学习性能,但是目标域与源域的数据通常不满足独立同分布,容易导致“负迁移”问题.本文在有监督主题模型(Supervised LDA,SLDA)的基础上,融合迁移学习方法提出一种共享主题知识的迁移主题模型(Transfer SLDA,Tr-SLDA),提出Tr-SLDA-Gibbs主题采样新方法,在类别标签的约束下对不同领域文档中的词采取不同的采样策略,且无需指定主题个数.辅助源域与目标域共享潜在主题空间,Tr-SLDA通过发