论文部分内容阅读
基于谐振式光学陀螺高灵敏度、低成本与微型化的发展需求,为了实现高灵敏度的谐振式微光机电陀螺,提出了以集成光学微谐振腔领域里高值、大直径谐振腔的制作为目标,应用方向为谐振式光学陀螺的球形光学微谐振腔核心敏感单元.在实验中以氢火焰作为热源采用熔融法制备球形光学微谐振腔.通过调节氢气的流量控制氢火焰热源面积,制备了不同直径(300—2200μm)的球形谐振腔,分析了球形谐振腔值、乘积、陀螺灵敏度与谐振腔直径的对应关系及其原因,获得了最优参数的面向谐振式光学陀螺的球形谐振腔敏感单元.=1260μm时,球腔品质因数=7 18×107,得到的最优陀螺灵敏度约为10?/h,满足商业级应用的需求,为芯片级、高精度、低成本的新型谐振式光学微腔陀螺的研究奠定了实验基础.
Based on the demand of high sensitivity, low cost and miniaturization of resonant optical gyro, in order to realize high sensitivity resonant micromechanical gyroscope, aiming at the fabrication of high value and large diameter resonant cavity in the field of integrated optical microresonator, The application direction is the spherical optical microresonator core sensitive unit of the resonant optical gyroscope. In the experiment, a spherical optical microresonator was prepared by melt method using hydrogen flame as the heat source. By adjusting the hydrogen flow rate and controlling the area of the hydrogen flame heat source, (300-2200μm) spherical resonant cavity, the spherical resonant cavity value, the product, the gyro sensitivity and the diameter of the cavity and the corresponding relationship between the reasons for obtaining the optimal parameters of resonant cavity-oriented spherical resonator resonant unit. = 1260μm, the spherical cavity quality factor = 7 18 × 107, the optimal gyroscope sensitivity is about 10? / H, which meets the requirements of commercial applications. It is a new resonant microcavity with chip level, high precision and low cost The research of gyroscope laid the foundation of experiment.