论文部分内容阅读
高斯过程(GP)模型是核学习方法与贝叶斯推理相结合的典范,现已成为机器学习领域的一个研究热点。作为对GP模型的拓展,高斯过程混合(MGP)模型具有更强大的学习能力和适应性。然而,目前关于GP和MGP模型的研究较为零散,尚缺少系统的分析与总结。本文首先对于GP模型的基本原理及其研究进展进行了深入地分析和讨论;然后将GP模型拓展至MGP模型,从多方面对MGP模型的研究现状和进展进行了深入地分析和讨论,并指出未来值得探索的研究方向和应用问题。