论文部分内容阅读
以皖北地区采集的115个砂姜黑土样本为研究对象,获取土壤样本光谱数据,采用竞争性自适应重加权算法(CARS)、连续投影算法(SPA)、随机森林特征选择算法(RFFS)对土壤总氮含量特征波长进行选择,并分别应用偏最小二乘回归(PLSR)、支持向量机回归(SVR)、最小绝对值收缩和选择算子回归(LASSO)建立土壤总氮含量估算模型。结果表明,除CARS-PLSR方法模型精度低于相应的全波长模型外,其他基于选定的特征波长进行建模的效果都优于全波长。综合比较各变量筛选与回归建模组合发现,RFFS方法从全波长