低压差稳压器选择

来源 :电子产品世界 | 被引量 : 0次 | 上传用户:linxunchang
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  摘要:本文介绍低压差稳压器(LDO)的基本结构和使用技巧以确保其稳定工作。我们还讨论ADI公司LDO系列产品的设计特点,这些特点可提供一种保持动态稳定性和直流(DC)稳定性的灵活方法。
  关键词:LDO;ADI;直流稳定性;稳压器
  
  稳压器用于提供一种不随负载阻抗、输入电压、温度和时间变化而变化稳定的电源电压。低压差稳压器因其能够在电源电压(输入端)与负载电压(输出端)之间保持微小压差而著称。例如,如果锂电池电压从4.2 V(全充电)下降到2.7 V(几乎全放电),而LDO可在负载端保持2.5 V恒定电压。便携式应用的日益增加使得设计工程师考虑使用LDO保持所需的系统电压,而与电池充电状态无关。便携式系统不是受益于LDO的唯一应用,任何需要稳定恒定电压,同时使上流电源电压最小(或者能处理上流电源大幅度波动)的设备都可以考虑使用LDO。典型实例包括使用数字和射频(RF)负载的电路。
  “线性”串联稳压器(见图1)通常包括一个基准电压源、一个比例输出电压与基准电压比较环节、一个反馈放大器和一个串联调整管组成(双极型晶体管或FET管)组成,用放大器控制稳压器的压降维持要求的输出电压值。例如,如果负载电流下降,会引起输出电压显著上升,误差电压增大,放大器的输出上升,调整管两端的电压会增加,因此输出电压回到其原始值。
  


  在图1中,误差放大器和PMOS晶体管构成压控电流源。输出电压VOUT按分压比(R1,R2)成比例下降,并且将其与基准电压(VREF)比较。误差放大器的输出控制增强型PMOS晶体管。
  稳压器的“压差”是指输出电压与输入电压之间的压差,如果此输入电压继续减小那么该电路便不能稳压。通常认为当输出电压下降到低于标称值100 mV时是达到的目标。表征这LDO稳压器的关键指标取决于负载电流和调整管的PN结温度。
  压差对稳压器分为三类:标准稳压器、准LDO和LDO。
  标准稳压器,通常使用NPN调整管,通常输出管的压降大约为2V。
  准LDO稳压器,通常使用达林顿复合管结构(见图2)以便实现由一只NPN晶体管和一只PNP晶体管组成的调整管。这种复合管的压降,VSAT(PNP)+VBE(NPN)通常大约为1V-比LDO高但比标准稳压器低。
  LDO稳压器通常根据压差要求作最佳选择,通常压差在100 mV~200 mV范围。然而,LDO的缺点是其接地引脚的电流通常比准LDO或标准稳压器大。
  标准稳压器比其它类型稳压器具有较大的压差,较大的功耗和较低的效率。大多数情况下可使用LDO稳压器代替标准稳压器,但是应该考虑到LDO稳压器的最大输入电压指标比标准稳压器低。此外,有些LDO需要精心挑选外部电容器以保持稳定性。这三种类型稳压器在带宽和动态稳定性考虑因素方面也有些不同。
  
  如何选择最佳稳压器
  
  为特定的应用选择合适的稳压器,需要考虑输入电压的类型和范围(例如稳压器前面的DC/DC变换器或开关电源的输出电压)。其它重要考虑因素是:需要的输出电压、最大负载电流、最小压差、静态电流和功耗。通常,稳压器的附加功能可能很有用,例如待机引脚或指示稳压失效的错误标志。
  


  为了选择合适类型的LDO,需要考虑输入电压源。在电池供电应用中,当电池放电时,LDO必须维持所需的系统电压。如果DC输入电压是由经过整流的AC电源提供,那么压差并不重要,因此标准稳压器可能是更好的选择,因为其更价格较低并且可以提供较大的负载电流。但是如果需要较低功耗或较精密的输出电压,则LDO是合适的选择。
  当然,稳压器应该在最坏工作环境达到规定精度的条件下能够为负载提供足够大的电流。
  
  LDO结构
  
  在图1中,调整管是PMOS晶体管。然而,稳压器可能使用各种类型的调整管,因此可以根据所使用的调整管类型对LDO分类。不同结构和特性的LDO具有不同的优点和缺点。四种类型调整管示例如图3所示,包括NPN双极型晶体管、PNP双极型晶体管、复合晶体管和PMOS晶体管。
  对于给定的电源电压,双极型调整管可提供最大的输出电流。PNP优于NPN,因为PNP的基极可以与地连接,必要时使晶体管完全饱和。NPN的基极只能与尽可能高的电源电压连接,从而使最小压降限制到一个VBE结压降。因此,NPN管和复合调整管不能提供小于1V的压差。然而它们在需要宽带宽和抗容性负载干扰时非常有用(因为它们具有低输出阻抗ZOUT特性)。
  


  PMOS和PNP晶体管可以快速达到饱和,从而能使调整管电压损耗和功耗最小,从而允许用作低压差、低功耗稳压器。PMOS调整管可以提供尽可能最低的电压降,大约等于RDS(ON)×IL。它允许达到最低的静态电流。PMOS调整管的主要缺点是MOS晶体管通常用作外部器件一特别当控制大电流时一从而使IC构成一个控制器,而不能构成一个自身完整的稳压器。
  一个完整稳压器的总功耗是
  PD=(VIN-VOUT)IL+VINIGND
  上面关系式的第一部分是调整管的功耗;第二部分是电路控制器部分的功耗。有些稳压器的接地电流,特别是那些用饱和双极型晶体管作调整管的稳压器,会在上电期间达到峰值。
  
  确保LDO动态稳定性
  
  适合普通应用的传统LDO稳压器设计存在稳定性问题。这个问题是由于反馈电路的性能、多种可能的负载、环路中元件的变化和难于获得具有一致性参数的精密补偿。下面将讨论这些考虑因素。LDO通常使用一个反馈环路在输出端提供一个与负载无关的恒定电压。因为对于任何高增益反馈环路来说,环路增益传递函数中极点和零点的位置都决定其稳定性。
  基于NPN管的稳压器具有低阻抗射极负载输出,倾向于对输出容性负载很不敏感。然而,基于PNP管和PMOS管的稳压器具有较大的输出阻抗(在基于PNP管的稳压器中具有高阻抗集电极负载)。此外,环路增益和相位特性强烈依赖负载阻抗,因此对于稳定性问题需要特别考虑。
  基于PNP管的LDO和基于PMOS管的LDO的传递函数具有几个影响稳定性的极点:
  主极点(图4中的P0)由误差放大器决定;它是由放大器的gm通过内部补偿电容CCOMP一起控制和确定的。主极点对上述所有LDO结构都是共同的。
  第二极点(P1)由输出电抗(指输出电容和负载电容以及负载阻抗)决定。这使得应用问题更难处理,因为这些电抗会影响环路的增益和带宽。
  第三极点(P2)由调整管附近的寄生电容决定。在相同条件下,PNP功率晶体管的单位增益频率(fT)比NPN晶体管的fT低很多。
  如图4所示,每个极点产生每10倍频程20dB的增益下降并且伴随90。的相移。因为这里所讨论的LDO有多个极点,所以如果单位增益频率处的相移达到-180°,线性稳压器会变得不稳定。图4还示出了容性负载对稳压器的影响,其等效串联电阻(ESR)会在传递函数中增加一个零点(ZESR)。该零点有助于补偿其中一个极点,并且如果该极点出现在单位增益频率以下时有助于稳定环路并且保持相应频点的相移低于-180°。
  ESR对于维持稳定性可能是至关重要的,特别对于使用纵向PNP调整管的LDO。然而,由于电容器的寄生特性,所以ESR不总是好控制。电路可能需要ESR集中在某个窗口范围内以确保LDO工作在对于所有输出电流都稳定的区域(见图5)。
  虽然原则上选择具有合适ESR的合适电容器(要求频率响应曲线在穿过0 dB之前下降得足够快,并且在达到相关极点P2之前向低于0 dB增益方向减小得足够满)非常困难。实际考虑还会增加更多的困难:ESR随着产品型号变化;大批量生产使用的最小电容值需要进行基准测试,包括最小环境温度和最大负载的极端条件。电容器类型的选择也很重要。最合适的电容器是钽电解电容器,尽管具有大容量的钽电解电容器尺寸很大。铝电解电容器的尺寸很小,但其ESR在低温时会变差,并且在-30°C以下无法正常工作。多层陶瓷电容类型无法为普通的LDO提供足够的电容,但是它们这种稳定的低电容适合于新型LDO。
其他文献
2008年9月底,业界瞩目的CEATECJAPAN 2008展会在日本隆重开幕。来自日本以及其他国家和地区的800多家厂商以精彩丰富的元器件、软件、服务等新技术融合搭建的新产业舞台向人们展示了未来消费电子技术的发展趋势,推开了数字融合新阶段的大门。当今信息家电化、宽带化、无线化、IP化、数字广播的发展,对电子元器件产业的技术提出了更高的要求。电子元器件展馆中株式会社村田制作所、Epson Toyo
期刊
一家小公司,在2006、2007两年均实现业绩100%以上的增长,即使是在今年行业不景气的情况下,也仅用半年时间就实现了上年总业绩的70%。  这家公司就是位列我国台湾IC设计十大厂商之一的创意电子股份有限公司,两个明智抉择成就了今天的斐然业绩。  首先,联合代工巨头台积电(TSMC),创意电子获得其充分的资金、技术支持,并秉承其科学的管理经验。谈到合作的意义,创意电子市场处处长黄克勤博士侃侃而谈
期刊
摘要:如何在新品设计、老产品更新换代中正确选择MCU和供应商将是开发者面临的一个重要题目。32位MCU正在受关注,MCU呈现单一功能和高集成度,功耗更低并注重能耗管理技术,开发工具更加融合。  关键词:MCU;低功耗;开发工具;Cortex-M3    32位大行其道      消费类电子、汽车电子和工业应用三大行业正在推动32位MCu的广泛采用,Gartner的数据显示,到了2012年,32位M
期刊
X86架构的嵌入式处理器市场终于迎来了第一款SoC。2008年10月30日,英特尔在北京的“英特尔首款嵌入式SoC应用论坛”上向中国市场发布了第一款基于英特尔架构(IA架构)的嵌入式SoC—EP80579集成处理器(代号Tolapai)。    EP80579揭密    EP80579基于改进版的奔腾M内核,频率有600MHz、1GHz、1.2GHz三种,采用65nm工艺制造,集成1.48亿个晶体
期刊
摘要:随着无线技术的发展,通信容量和多路通信逐渐对无线信道的性能提出更高的要求,在这样的情况,无线信道仿真技术在无线标准开发中扮演了越来越重要的角色,本文探讨了无线信道仿真技术的最新进展。  关键词:无线信道仿真;MIMO;智能天线;EB    无线技术的发展,在快速提升传输能力的同时,频谱利用率也在不断增加。新一代移动通信(B3G/4G)将可以提供高达100Mbit/s甚至更高的数据传输速率,在
期刊
摘要:通过实际应用电路展示,介绍了采用LTC2934和LTC2935超低功率监控器提供准确电压监视和微处理器控制,从而实现便携应用电池寿命的延长。  关键词:电源监控器;电池寿命;电源管理;LTC2934;LTC2935    引言    在电子设备(特别是电池供电型产品)的设计中,功耗是一项重要的问题。对于电子设备设计师而言,面临的难题是如何在不显著缩短设备电池运行时间的情况下增添功能。例如,拆
期刊
在法国瑞士边境的地下隧道中,欧洲核子研究中心的科学家们正在准备进行一项称为“大型离子撞击实验-ALICE(A Large IonCollider Experiment)”的实验。他们将利用世界上最强大的粒子加速器将两束重铅离子加速到接近光速的速度,并控制他们迎头相撞,试图重新创造出据说仅在宇宙大爆炸后短暂存在过的条件。CERN(欧洲核子研究中心)科学家预计每次相撞将会释放出巨大能量并产生约102℃
期刊
摘要:基于dsPIC30F4012,采集发动机曲轴瞬时转速信号,对发动机转矩进行估计。利用微控制器的输入捕捉通道,对滤波整形后的发动机瞬时转速脉冲进行采集,由微控制器计算实时转速,接着对其作傅利叶变换,得到对应平均转矩的特征指标,然后利用特征指标和平均转矩的线性关系估计出平均转矩。试验结果表明,估计精度在7%以内。  关键词:转矩估计;瞬时转速;FFT    注:“本文中所涉及到的图表、注解、公式
期刊
摘要:本文通过对仿纹波模式的探讨分析了如何利用该模式设计低输出电压纹波滞后模式稳压器。  关键词:ERM;降压转换;转换器;ESR    20年前,简单易用的集成开关稳压器的问世带来了电源管理技术革命。此前,大多数的应用都是采用线性稳压器作为电源电压以及复杂的专有开关式电源。而今,美国国家半导体著名的Simple Switcher系列D C-D C稳压器已被广泛应用在各式各样的设计中。在实现Sim
期刊
能源对全球经济发展和社会进步起着举足轻重的作用。石油、煤炭、天然气等化石能源价格飚升及全球气候变迁导致的气候灾难,迫使人们寻找可再生能源。太阳能由于其清洁、易获取的特性日益受到各国的青睐。随着技术的进步,太阳能产业的商业化前景看好,未来10年甚至50年内,太阳能产业的年增长速度将高达30~40%。  目前太阳能电池主要有两种实现方式,一是晶硅太阳能电池,这种电池转换效率高,成本高,价格也相对较高。
期刊