论文部分内容阅读
目的构建基于超声影像特征的机器学习模型预测甲状腺结节的良恶性,选择最佳模型以准确预测甲状腺结节的良恶性。方法回顾性分析有明确病理结果的甲状腺结节病人2410例共2516个结节的超声影像特征。使用SPSS Modeler18.0统计软件,将结节随机分为训练队列和验证队列,训练队列包括1992个结节(80%),验证队列包括524个结节(20%)。在训练队列和验证队列中,分别使用支持向量机(SVM)、Logistc回归分析、分类回归树(C&R)、决策树(C5.0)、贝叶斯网络和类神经网络6个分类器构建机