论文部分内容阅读
网络信息的爆炸式增长使得推荐系统成为一项研究的热点。现存的推荐系统在实际运营中存在各自的缺陷。在web2.0环境下,标签、项目得分以及用户标注项目的时间均包含暗示用户偏好的重要信息,这些信息对提高推荐系统准确度是十分重要的。在借鉴协同过滤思想的基础上,提出综合考虑标签、项目得分和用户偏好时效性的项目推荐模型,并对此模型的体系结构及应用前景进行了分析。