物联集群企业协同创新力双因素影响效应研究

来源 :科技进步与对策 | 被引量 : 0次 | 上传用户:zcom0907
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
物联网在集群企业中的应用与发展改变了传统集群网络结构和协同机制。在物联网中,集群企业嵌入网络并融合互联互通的物联信息,对其协同创新能力具有重要影响。在对相关研究进行整理的基础上,结合物联集群企业发展特点,提出物联集群网络嵌入力、物联集群信息融合力、物联集群协同创新力3个概念,运用结构方程模型对3个概念的结构性特征进行CFA检验,并就信息融合力与网络嵌入力对协同创新力的双因素效应进行检验,研究结论有利于进一步丰富企业协同创新理论。
其他文献
准确地估计小麦叶片病害的严重度,可以针对性施用农药,减少种植成本和农业生态环境污染,同时有助于实现对麦田病情的精准防控。本文以小麦叶片条锈病和白粉病为研究对象,针对同类型病害的不同严重度之间的图像颜色及纹理特征差异较小,传统方法病害严重度估计准确率不高的问题,提出一种基于循环空间变换的卷积神经网络(Recurrent spatial transformer convolutional neural
期刊
针对土壤湿度观测数据量过少,导致模型出现过拟合而影响预测精度的问题,本文提出融合迁移学习的土壤湿度预测时空模型,首先将ERA5-land数据集作为源域,然后通过三维卷积层提取土壤湿度滞后时刻的空间特征,并融入长短期记忆网络中提取其时间特征,对网络模型进行预训练,最后以微调方式在SMAP数据集中调整网络参数,进而预测未来土壤湿度。实验结果表明本文提出的时空深度学习模型相对于卷积神经网络,长短期记忆网
期刊
针对水下图像降质的问题,提出一种基于条件生成对抗网络(CGAN)的自适应密集特征融合水下图像增强算法。该算法提出一种新颖的自适应密集特征融合(ADFF)模块,通过自适应学习不同级别特征的空间重要性权重,从而促使网络从以前和现在的特征中学习更有效的特征进行融合。实验中,采用U-Net结构的生成器,将ADFF模块集成在生成器的每一级别,使用WGAN-GP对抗损失与L_(1)和L_(2)损失的组合损失对
期刊
针对变工况环境下采集到的滚动轴承振动数据特征分布不一致及待诊断样本标签较难获取的问题,提出了一种子领域自适应的深度迁移学习故障诊断方法。首先,为充分利用卷积神经网络图像特征提取能力,将滚动轴承振动信号采用连续小波变换生成图像数据集。其次,源域与目标域通用特征提取采用改进图像集预训练的Resnet-50网络结构,子领域自适应度量引入局部最大均值差异(Local Maximum Mean Discre
期刊
针对目前点云在大数据量下的自动配准算法计算效率低下,粗配准初值匹配稳定性差,参数难以设置等问题,提出一种基于匹配对间相对几何不变性特点的快速粗配准算法。首先通过点云邻域特征值筛选一定量的关键点,利用快速点特征直方图(Fast Point Feature Histogram, FPFH)描述子初步获取最邻近匹配对;然后通过点云特征的对称候选寻点策略及两组正确匹配对在源点云与目标点云对应边的2-范数比
期刊
在智能电网发展的新时期,提高业扩报装的工作效率以及智能化程度是一项重要任务,在这一过程中对于电气图纸中电气元件符号的识别尤其关键。已有方法在算法精度以及鲁棒性上都存在不足。本文基于YOLOv3提出了一种改进的电气符号识别算法,改进了模型超参数选取策略,构建了自下而上的特征融合网络以及基于图像冗余的图像预处理方法,有效的解决了传统方法精确度低的问题。平均准确率和召回率达到94.8%和96.5%,与传
期刊
立足于电厂安全管理现状,针对部分人员不按规定佩戴安全帽进入电厂作业区域造成安全隐患问题,对基于图像智能处理的安全帽佩戴检测技术开展研究。设计了一种安全帽佩戴检测方法,通过掩膜区域卷积神经网络(mask region convolution neural network, Mask R-CNN)深度学习算法对作业人员图像分析,采集5000张安全帽佩戴照片样本作为训练图集,对其进行预处理,再由改进的特
期刊
行人异常行为的视觉检测是人工智能领域的研究热点之一。本文提出一种基于运动分析的行为检测方法,用于行人异常行为的检测。利用HSV色彩空间变换法抑制阴影;利用三帧法建立初始化背景模型;将所提取的连续三帧图像的背景像素进行填充融合以实现背景图像的重构,进而更新背景图像,最终完成背景图像的建立;将大津法(Otsu)和背景差分法进行融合以自适应检测前景目标;将目标区域的质心差值、矩形宽高比和倾斜角度的多个特
期刊
基于图像的虚拟试衣能够将目标服装图像合成到人物图像上,这一任务近年来因其在电子商务和时装图像编辑方面的广泛应用而备受关注。针对该任务的特点和已有方法的缺陷,提出一种两阶段可调节感知蒸馏方法(TS-APD)。TS-APD方法包括3个步骤:首先,分别对服装图像和人物图像预训练两个语义分割网络,生成更准确的服装前景分割和上衣分割;然后,利用这两个语义分割和其他解析信息训练基于解析器的“导师”网络;最后,
期刊
为消除γ辐射环境视频监控图像内大量形状不规则、分布无规律、能量不均衡的噪斑,提出一种利用图像局部相邻像素关联信息去除噪斑的方法。首先根据γ辐射环境视频监控图像噪斑像素值的突变特性分割噪斑区域,再利用噪斑与当前帧噪斑相邻干净区域的局部关联性及噪斑与相邻帧相同坐标干净区域像素点的局部关联性,以两个干净区域像素值为基准、像素值差值为关联度,采用步进式方法修复噪斑区域。实验结果表明,与传统的图像噪斑去除算
期刊