论文部分内容阅读
摘要: 隔振是一种航天器振动控制的重要方法,隔振器内部机理的理论研究是设计隔振器的重要基础。针对航天新型黏性流体微振动隔振器内部阻尼部件,基于其工作原理和变形模式,提出一种理论分析模型。利用固体、流体力学基本原理对其阻尼产生机理及刚度特性进行推导,得到阻尼特性参数和刚度特性参数的理论表达式,并建立了由物理设计参数所表示的振动参数块模型。应用机械阻抗等效理论将隔振器五参数模型转化为便于分析的三参数模型,得到了隔振器的性能目标参数。采用单一变量法分析和研究了隔振器性能目标参数随各设计参数的变化规律,并进行了实验验证。所提的分析理论和方法可为该类型黏性流体微振动隔振器的设计及工程应用提供理论依据和参考。关键词: 航天器; 微振动隔振器; 隔振机理; 机械阻抗; 参数化研究
中图分类号: V414.3+3; O328文献标志码: A文章编号: 10044523(2015)02023711
DOI:10.16385/j.cnki.issn.10044523.2015.02.009
引言
近年来随着航天技术向高精度、高分辨率、高稳定性方向快速发展,对航天器各部件发射及在轨运行时的振动提出了苛刻的要求,如为提高对地观测分辨率,需对动量轮、反作用轮等扰动源进行振动控制,使得光学有效载荷部件的振动位移幅值衰减到微纳米量级[1~4]。常用的振动控制方法可分为主动控制与被动控制,其中主动控制因其成本高、控制算法复杂、附加设备多、稳定性差等方面的原因[5~8]而很少在航天工程中实际采用。相反,被动控制技术以其实现原理及结构形式简单、稳定性好而广泛被各国所采用[9~11],如美国曾成功将一种微振动隔振器用于哈勃望远镜以隔离反作用轮的扰振作用,大大提高了其观测性能[12]。隔振作为一种常用的振动控制技术,通常在仪器设备与基础之间放置隔振器,以减小能量的传递来实现。
在工程实际中,可基于多种原理对隔振器结构形式进行设计,例如磁流变原理、压电原理、电流变原理、黏性流体耗能原理等[13~15],然而在航天工程10-6 m量级微振动领域中,常规的隔振器已无能为力。依靠结构部件的弹性变形来驱动流体运动,并利用黏性流体剪切耗能设计的流体隔振器在这方面的应用成为可能[16,17]。当处于在轨微米级振动范围内时,其可产生足够的耗能作用减小振动;当处于大振幅发射阶段时,其外部套筒可承受发射载荷而避免设计复杂、沉重的发射锁定装置,不仅保护了内部结构组件,且可降低发射成本。美国霍尼韦尔公司、喷气推动实验室曾为NASA研制了多种流体微振动隔振器,但关于其内部机理的研究却未曾公开[18,19]。Davis [18]仅给出一种称作Dstrut流体微振动隔振器阻尼系数的计算公式及测试原理。Anderson[19]曾给出一种流体微振动隔振器模型,仅说明了体积刚度的来源,采用拟合的方法得到阻尼系数及其刚度系数。因此对流体微振动隔振器内部阻尼产生机理及其刚度特性进行研究,不仅可为隔振器的设计提供参考,对于未来航天器部件减振技术的发展、提高航天器观测精度和方便一些特殊的军事应用也具有重要的意义。
本文针对航天新型黏性流体微振动隔振器进行研究,依据其内部阻尼部件的工作原理及变形模式,在有限元分析的基础上提出一种理论分析模型。当隔振器内部流体为牛顿流体时,利用固体、流体力学基本原理对其阻尼产生机理及刚度特性进行理论推导。在此基础上,应用机械阻抗等效理论将隔振器五参数模型转化为便于分析的三参数模型以得到隔振器性能目标参数。最后,采用单一变量法分析和研究目标参数随各主要设计参数的变化规律,并进行实验验证。本文的分析理论和方法可为该类型流体微振动隔振器的设计及工程应用提供参考。
4结论
本文针对航天新型黏性流体微振动隔振器进行研究,依据内部阻尼部件的工作原理及其变形模式,在有限元分析的基础上提出一种理论分析模型。当隔振器内部流体为牛顿流体时,利用固体、流体力学基本原理对其阻尼产生机理及刚度特性进行理论推导,得到由阻尼部件各设计参数所表示的刚度系数与阻尼系数。在此基础上,从隔振器的参数块模型出发,应用机械阻抗等效理论将隔振器五参数模型转化为便于分析的三参数模型,并由三参数模型的阻抗分析结论得出隔振器性能目标参数。最后,采用单一变量法分析和研究隔振器性能目标参数随各设计参数的变化规律,得到其中一些如Rl,Do和μ等重要的设计参数,并总结了这些参数对目标参数的影响规律。为证明上述规律的正确性,利用实验进行了验证,在初步设计隔振器时,可根据设计目标综合考虑各因素的影响。本文的分析理论和方法可为该类型流体微振动隔振器的设计及工程应用提供参考。
参考文献:
[1]Zhang Y, Zhang J R, Zhai G, et al. High imaging performance of optical payload by vibration isolation system[A]. AAIA Guidance, Navigation, and Control Conference 2012[C]. Minneapolis, MN, USA, 2012:1—13.
[2]Cobb R G, Sullivan J M, Das A, et al. Vibration isolation and suppression system for precision payloads in space[J]. Smart Materials and Structures, 1999, 8(6): 798—812.
[3]Marr J C. Space Interferometry Mission (SIM): overview and current status[A]. Proceedings of SPIE, Interferometry in Space[C]. Waikoloa, Hawaii, USA, 2003: 1—15. [4]Ciero M K. Design of a fluid elastic actuator with application to structure control[D]. Cambridge, MA: Massachusetts Institute of Technology, 1993.
[5]Foshage G K, Davis T, Sullivan J M, et al. Hybrid active/passive actuator for spacecraft vibration isolation and suppression[A]. Proceedings of SPIE, Actuator Technology and Applications[C]. Denver, CO, USA, 1996: 104—122.
[6]Spanos J T, Rahman Z H. Narrowband control experiments in active vibration isolation[A]. Proceedings of SPIE, Vibration Monitoring and Control[C]. San Diego, CA, 1994: 13—19.
[7]Vaillon L, Petitjean B, Frapard B, et al. Active isolation in space truss structures: from concept to implementation[J]. Smart Materials and Structures, 1999, 8(6): 781—790.
[8]Collins S A, Paduano J D, von Flotow A H. Multiaxis vibration cancellation for stirling cryocoolers[A]. Proceedings of SPIE, Cryogenic Optical Systems and Instruments VI[C]. Orlando, FL, 1994: 145—155.
[9]Boyd J, Hyde T T, Osterberg D, et al. Performance of a launch and onorbit isolator[A]. Proceedings of SPIE, Smart Structures and Materials 2001: Smart Structures and Integrated Systems[C]. Newport Beach, CA, USA, 2001: 433—440.
[10]Bronowicki A J, MacDonald R, Gursel Y, et al. Dual stage passive vibration isolation for optical interferometer missions[A]. Proceedings of SPIE, Interferometry in Space[C]. Waikoloa, Hawaii, USA, 2003: 753—763.
[11]Rittweger A, Albus J, Hornung E, et al. Passive damping devices for aerospace structures[J]. Acta Astronautica, 2002, 50(10): 597—608.
[12]Davis L P, Carter D R, Hyde T T. Secondgeneration hybrid Dstrut[A]. Proceedings of SPIE, Smart Structures and Materials 1995: Passive Damping[C]. San Diego, CA, USA, 1995: 161—175.
[13]Winthrop M F, Cobb R G. Survey of stateoftheart vibration isolation research and technology for space applications[A]. Proceedings of SPIE, Smart Structures and Materials 2003: Damping and Isolation[C]. San Diego, CA, USA, 2003: 13—26.
[14]Smith C A, Anderson E H. Passive damping by smart materials: analysis and practical limitations[A]. Proceedings of SPIE, Smart Structures and Materials 1995: Passive Damping[C]. San Diego, CA, USA, 1995:136—148.
[15]廖蕾. 流体阻尼隔振器参数与模型的研究[D]. 哈尔滨: 哈尔滨工业大学, 2003.
Liao Lei. The study of parameter and model of fluid damping isolators [D]. Harbin: Harbin Institute of Technology, 2003.
[16]Hyde T T, Anderson E H. Actuator with builtin viscous damping for isolation and structural control[J]. AIAA Journal, 1996, 34(1): 129—135. [17]Vaillon L, Philippe C. Passive and active micro vibration control for very high pointing accuracy space systems[J]. Smart Materials and Structures, 1999, 8(6):719—728.
[18]Davis L P, Workman B J, Chu C C, et al. Design of A DStrutTM and its application results in the JPL, MIT, and LARC test beds[A]. Proceedings of the 33rd AIAA/ASME/AHS/ASC Structures, Structural Dynamics and Material Conference[C]. Dallas, TX, USA, 1992:1 524—1 530.
[19]Anderson E, Trubert M, Fanson J, et al. Testing and application of a viscous passive damper for use in precision truss structures[A]. Proceeding of the 32nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference[C]. Baltimore, MD, USA, 1991: 2 796—2 808.
Abstract: Isolation is one of important methods of spacecraft vibration control, and the theoretical study of isolators′ internal mechanism is the foundation to design vibration isolators. In this paper, the internal damping component of a new type of space microvibration isolator with viscous fluid is studied. Based on its working principle and deformation mode, a theoretical analysis model is proposed. By using the theory of solid and fluid mechanics, the damping generation mechanism and stiffness characteristics are derived. Thus, the theoretical expressions of damping and stiffness characteristic parameters are obtained, and then a vibration lumped parameter model which is represented by physical design parameters is established. Through the application of equivalent theory of mechanical impedance, a simplified threeparameter model is transformed from the fiveparameter model of isolator, and in this way, the performance target parameters of this vibration isolator are obtained. The single variable method is used to analyze and study how these performance target parameters vary with each design parameter, and then validate them with experiments. The presented analysis theory and method could also provide a reference and theoretical basis for the design and engineering application of viscous fluid microvibration isolators.
Key words: spacecraft; microvibration isolator; vibration isolation mechanism; mechanical impedance; parametric study
中图分类号: V414.3+3; O328文献标志码: A文章编号: 10044523(2015)02023711
DOI:10.16385/j.cnki.issn.10044523.2015.02.009
引言
近年来随着航天技术向高精度、高分辨率、高稳定性方向快速发展,对航天器各部件发射及在轨运行时的振动提出了苛刻的要求,如为提高对地观测分辨率,需对动量轮、反作用轮等扰动源进行振动控制,使得光学有效载荷部件的振动位移幅值衰减到微纳米量级[1~4]。常用的振动控制方法可分为主动控制与被动控制,其中主动控制因其成本高、控制算法复杂、附加设备多、稳定性差等方面的原因[5~8]而很少在航天工程中实际采用。相反,被动控制技术以其实现原理及结构形式简单、稳定性好而广泛被各国所采用[9~11],如美国曾成功将一种微振动隔振器用于哈勃望远镜以隔离反作用轮的扰振作用,大大提高了其观测性能[12]。隔振作为一种常用的振动控制技术,通常在仪器设备与基础之间放置隔振器,以减小能量的传递来实现。
在工程实际中,可基于多种原理对隔振器结构形式进行设计,例如磁流变原理、压电原理、电流变原理、黏性流体耗能原理等[13~15],然而在航天工程10-6 m量级微振动领域中,常规的隔振器已无能为力。依靠结构部件的弹性变形来驱动流体运动,并利用黏性流体剪切耗能设计的流体隔振器在这方面的应用成为可能[16,17]。当处于在轨微米级振动范围内时,其可产生足够的耗能作用减小振动;当处于大振幅发射阶段时,其外部套筒可承受发射载荷而避免设计复杂、沉重的发射锁定装置,不仅保护了内部结构组件,且可降低发射成本。美国霍尼韦尔公司、喷气推动实验室曾为NASA研制了多种流体微振动隔振器,但关于其内部机理的研究却未曾公开[18,19]。Davis [18]仅给出一种称作Dstrut流体微振动隔振器阻尼系数的计算公式及测试原理。Anderson[19]曾给出一种流体微振动隔振器模型,仅说明了体积刚度的来源,采用拟合的方法得到阻尼系数及其刚度系数。因此对流体微振动隔振器内部阻尼产生机理及其刚度特性进行研究,不仅可为隔振器的设计提供参考,对于未来航天器部件减振技术的发展、提高航天器观测精度和方便一些特殊的军事应用也具有重要的意义。
本文针对航天新型黏性流体微振动隔振器进行研究,依据其内部阻尼部件的工作原理及变形模式,在有限元分析的基础上提出一种理论分析模型。当隔振器内部流体为牛顿流体时,利用固体、流体力学基本原理对其阻尼产生机理及刚度特性进行理论推导。在此基础上,应用机械阻抗等效理论将隔振器五参数模型转化为便于分析的三参数模型以得到隔振器性能目标参数。最后,采用单一变量法分析和研究目标参数随各主要设计参数的变化规律,并进行实验验证。本文的分析理论和方法可为该类型流体微振动隔振器的设计及工程应用提供参考。
4结论
本文针对航天新型黏性流体微振动隔振器进行研究,依据内部阻尼部件的工作原理及其变形模式,在有限元分析的基础上提出一种理论分析模型。当隔振器内部流体为牛顿流体时,利用固体、流体力学基本原理对其阻尼产生机理及刚度特性进行理论推导,得到由阻尼部件各设计参数所表示的刚度系数与阻尼系数。在此基础上,从隔振器的参数块模型出发,应用机械阻抗等效理论将隔振器五参数模型转化为便于分析的三参数模型,并由三参数模型的阻抗分析结论得出隔振器性能目标参数。最后,采用单一变量法分析和研究隔振器性能目标参数随各设计参数的变化规律,得到其中一些如Rl,Do和μ等重要的设计参数,并总结了这些参数对目标参数的影响规律。为证明上述规律的正确性,利用实验进行了验证,在初步设计隔振器时,可根据设计目标综合考虑各因素的影响。本文的分析理论和方法可为该类型流体微振动隔振器的设计及工程应用提供参考。
参考文献:
[1]Zhang Y, Zhang J R, Zhai G, et al. High imaging performance of optical payload by vibration isolation system[A]. AAIA Guidance, Navigation, and Control Conference 2012[C]. Minneapolis, MN, USA, 2012:1—13.
[2]Cobb R G, Sullivan J M, Das A, et al. Vibration isolation and suppression system for precision payloads in space[J]. Smart Materials and Structures, 1999, 8(6): 798—812.
[3]Marr J C. Space Interferometry Mission (SIM): overview and current status[A]. Proceedings of SPIE, Interferometry in Space[C]. Waikoloa, Hawaii, USA, 2003: 1—15. [4]Ciero M K. Design of a fluid elastic actuator with application to structure control[D]. Cambridge, MA: Massachusetts Institute of Technology, 1993.
[5]Foshage G K, Davis T, Sullivan J M, et al. Hybrid active/passive actuator for spacecraft vibration isolation and suppression[A]. Proceedings of SPIE, Actuator Technology and Applications[C]. Denver, CO, USA, 1996: 104—122.
[6]Spanos J T, Rahman Z H. Narrowband control experiments in active vibration isolation[A]. Proceedings of SPIE, Vibration Monitoring and Control[C]. San Diego, CA, 1994: 13—19.
[7]Vaillon L, Petitjean B, Frapard B, et al. Active isolation in space truss structures: from concept to implementation[J]. Smart Materials and Structures, 1999, 8(6): 781—790.
[8]Collins S A, Paduano J D, von Flotow A H. Multiaxis vibration cancellation for stirling cryocoolers[A]. Proceedings of SPIE, Cryogenic Optical Systems and Instruments VI[C]. Orlando, FL, 1994: 145—155.
[9]Boyd J, Hyde T T, Osterberg D, et al. Performance of a launch and onorbit isolator[A]. Proceedings of SPIE, Smart Structures and Materials 2001: Smart Structures and Integrated Systems[C]. Newport Beach, CA, USA, 2001: 433—440.
[10]Bronowicki A J, MacDonald R, Gursel Y, et al. Dual stage passive vibration isolation for optical interferometer missions[A]. Proceedings of SPIE, Interferometry in Space[C]. Waikoloa, Hawaii, USA, 2003: 753—763.
[11]Rittweger A, Albus J, Hornung E, et al. Passive damping devices for aerospace structures[J]. Acta Astronautica, 2002, 50(10): 597—608.
[12]Davis L P, Carter D R, Hyde T T. Secondgeneration hybrid Dstrut[A]. Proceedings of SPIE, Smart Structures and Materials 1995: Passive Damping[C]. San Diego, CA, USA, 1995: 161—175.
[13]Winthrop M F, Cobb R G. Survey of stateoftheart vibration isolation research and technology for space applications[A]. Proceedings of SPIE, Smart Structures and Materials 2003: Damping and Isolation[C]. San Diego, CA, USA, 2003: 13—26.
[14]Smith C A, Anderson E H. Passive damping by smart materials: analysis and practical limitations[A]. Proceedings of SPIE, Smart Structures and Materials 1995: Passive Damping[C]. San Diego, CA, USA, 1995:136—148.
[15]廖蕾. 流体阻尼隔振器参数与模型的研究[D]. 哈尔滨: 哈尔滨工业大学, 2003.
Liao Lei. The study of parameter and model of fluid damping isolators [D]. Harbin: Harbin Institute of Technology, 2003.
[16]Hyde T T, Anderson E H. Actuator with builtin viscous damping for isolation and structural control[J]. AIAA Journal, 1996, 34(1): 129—135. [17]Vaillon L, Philippe C. Passive and active micro vibration control for very high pointing accuracy space systems[J]. Smart Materials and Structures, 1999, 8(6):719—728.
[18]Davis L P, Workman B J, Chu C C, et al. Design of A DStrutTM and its application results in the JPL, MIT, and LARC test beds[A]. Proceedings of the 33rd AIAA/ASME/AHS/ASC Structures, Structural Dynamics and Material Conference[C]. Dallas, TX, USA, 1992:1 524—1 530.
[19]Anderson E, Trubert M, Fanson J, et al. Testing and application of a viscous passive damper for use in precision truss structures[A]. Proceeding of the 32nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference[C]. Baltimore, MD, USA, 1991: 2 796—2 808.
Abstract: Isolation is one of important methods of spacecraft vibration control, and the theoretical study of isolators′ internal mechanism is the foundation to design vibration isolators. In this paper, the internal damping component of a new type of space microvibration isolator with viscous fluid is studied. Based on its working principle and deformation mode, a theoretical analysis model is proposed. By using the theory of solid and fluid mechanics, the damping generation mechanism and stiffness characteristics are derived. Thus, the theoretical expressions of damping and stiffness characteristic parameters are obtained, and then a vibration lumped parameter model which is represented by physical design parameters is established. Through the application of equivalent theory of mechanical impedance, a simplified threeparameter model is transformed from the fiveparameter model of isolator, and in this way, the performance target parameters of this vibration isolator are obtained. The single variable method is used to analyze and study how these performance target parameters vary with each design parameter, and then validate them with experiments. The presented analysis theory and method could also provide a reference and theoretical basis for the design and engineering application of viscous fluid microvibration isolators.
Key words: spacecraft; microvibration isolator; vibration isolation mechanism; mechanical impedance; parametric study