论文部分内容阅读
本文建立一类与广义Baouendi—Grushin向量场联系的Hardy不等式.采用的技巧是延伸欧氏空间上的散度定理推出的基本积分不等式和选定适当的向量场.Hardy不等式相应的最佳常数也得到证明.本文结果包括了已有广义Baouendi-Grushin向量场的Hardy不等式.作为应用,讨论了由Baouendi-GrusMn向量场构成一退化次椭圆算子的一些性质和刻画了这类向量场构成的非线性算子的一个正解.