Ambipolar two-dimensional bismuth nanostructures in junction with bismuth oxychloride

来源 :纳米研究(英文版) | 被引量 : 0次 | 上传用户:gaoerwj
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
Despite the unique properties of bismuth (Bi),there is a lack of two-dimensional (2D) heterostructures between Bi and other functional 2D materials.Here,a coherent strategy is reported to simultaneously synthesize rhombohedral phase Bi nanoflakes and bismuth oxychloride (BiOCI) nanosheets.The delicate balance between several reactions is mediated mainly for the reduction and chlorination in the chemical vapor transport (CVT) process.The Bi-BiOCI lateral heterostructures have been constructed via the coalescence of the two different 2D nanostructures.The characteristics of ambipolar conducting Bi and insulator-like BiOCI are elaborated by scanning microwave impedance microscopy (sMIM).This work demonstrates a way to construct a 2D Bi nanostructure in junction with its oxyhalide.
其他文献
研究了铀溶液初始pH、HCO-3质量浓度和硫化纳米零价铁(sulfidized nano-scale zerovalent iron,SnZVI)投加量对SnZVI去除铀的动力学过程的影响,并通过SEM、XRD和XPS阐明SnZVI去除铀的机理。球形SnZVI颗粒直径为100~200 nm,比表面积为43.5 m2/g。SnZVI颗粒中含有Fe和FeS,且Fe(0)和Fe(Ⅱ)含量超过80%。SnZVI去除铀的动力学过程符合准一级动力学模型
Two-dimensional (2D) materials,such as transition metal dichalcogenides (TMDs),black phosphorus (BP),MXene and borophene,have aroused extensive attention since
Silicon is a low price and high capacity anode material for lithium-ion batteries.The yolk-shell structure can effectively accommodate Si expansion to improve s
The demand for high-performance non-precious-metal electrocatalysts to replace the noble metal-based catalysts for oxygen reduction reaction (ORR) is intensivel
Hexagonal molybdenum carbide (Mo2C) as an effective non-noble cocatalyst is intensively researched in the photocatalytic H2-evolution field owing to its Pt-like
Herein,a two-dimensional (2D) interspace-confined synthetic strategy is developed for producing MoS-2-intercalated graphite (G-MoS2)hetero-layers composite thro
Although tremendous efforts have been paid on electrocatalysts toward efficient electrochemical hydrogen generation,breakthrough is still highly needed in the d
Understanding the interaction of nanomaterials with biological systems has always been of high concem and interest.An emerging type of nanomaterials,ultrasmall
Novel physical properties emerge when the thickness of charge density wave (CDW) materials is reduced to the atomic level,owing to the significant modification
One dimensional (1D) nanostructures attract considerable attention,enabling a broad application owing to their unique properties.However,the precise mechanism o