论文部分内容阅读
针对在高维输入空间数据点的异常稀疏性(维数灾难)会导致支持向量机回归模型产生偏差的问题,提出了一种基于叠加模型的支持向量机回归方法———叠加支持向量机回归(AddS-VR)。AddSVR的实现是通过对每一维输入进行核化,然后将每一个核空间进行叠加得到,基于叠加模型可以克服维数灾难的问题,使得其在处理高维问题时估计偏差减小。为了更方便、迅速地实现AddSVR,还提出了对支持向量机的一种简化的二次规划描述。将AddSVR用于醋酸共沸精馏中塔底醋酸组分的预测,仿真实验结果表明,AddSVR模型与传统的SV