Liquid-like adsorbent assembled by CNTs:Serving as renewable CO2 capture materials for indoor air

来源 :能源化学 | 被引量 : 0次 | 上传用户:ez062009
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
In this study,a CO2 capture material in the form of liquid-like adsorbents (LLAs) is developed to overcome the limitations of conventional types of adsorbents.The increase in indoor activities necessitates the cap-ture of CO2 in enclosed indoor spaces.Indoor spaces require safe and stable materials for CO2 capture because humans are present in these spaces.Solid adsorbents are mainly used because liquid absorbents are unsuitable owing to noise and scattering problems.In LLA,the liquid absorbent assembled by carbon nanotubes (CNTs) is solidified and prevented from flowing and scattering indoor.LLAs present to main-tain 95% of initial capacity after recycling 20 times,and have characteristics that can be regenerated in a low temperature heat source (80 to 120 ℃) and moisture resistance.This work not only provides indoor useable CO2 capture materials,but also offers a new prospect in the field of adsorbents.
其他文献
To better utilize the infrared (IR) region in sunlight for photovoltaic devices (PVs),upconversion nanoparticles (UCNPs) have been proposed to improve power conversion efficiency (PCE).However,researchers recently have found that the upconversion (UC) eff
The stability issue has become one of the main challenges for the commercialization of perovskite solar cells (PSCs).Formamidinium (FA)-based perovskites have shown great promise owing to their improved thermal and moisture stability.However,these perovsk
It is a great challenge to develop membrane materials with high performance and long durability for acid-alkaline amphoteric water electrolysis.Hence,the graphitic carbon nitride (g-C3N4) nanosheets were compounded with the (2,2\'-m-phenylene)-5,5\'-b
Searching new structured black phosphorus (BP) and exploring intriguing functions and applications have become a hot topic so far.Here,we introduce a novel Iso-type black phosphorus heterostructure guided by first principle calculation,which features uniq
Lithium-sulfur (Li-S) batteries are regarded as one of the promising candidates for the next-generation energy storage system owing to their high capacity and energy density.However,the durable operation for the batteries is blocked by the shuttle behavio
The ever-increasing environmental/energy crisis as well as the rapid upgrading of mobile devices had stimulated intensive research attention on promising alternative energy storage and conversion devices.Among these devices,alkali metal ion batteries,such
Aqueous battery-supercapacitor hybrid devices (BSHs) are of great importance to enrich electrochemical energy storage systems with both high energy and power densities.However,further improvement of BSHs in aqueous electrolytes is greatly hampered by oper
With the rapid development of integrated and miniaturized electronics,the planar energy storage devices with high capacitance and energy density are in enormous demand.Hence,the advanced manufacture and fast fabrication of microscale planar energy units a
Inorganic CsPbI2Br perovskite solar cells (PSCs) have a tremendous development in last few years due to the trade-off between the excellent optoelectronic properties and the relatively outstanding stability.Herein,we demonstrated a strategy of secondary c
Three-dimensional (3D) frameworks have received much attention as an effective modification strategy for next-generation high-energy-density lithium metal batteries.However,the top-growth mode of lithium (Li) on the 3D framework remains a tough challenge,