论文部分内容阅读
针对人体运动模式识别中最优识别特征难以确定的问题,提出一种基于Relief-F特征加权支持向量机的运动模式识别算法。选取MEMS惯性传感器的加速度时域特征构成特征向量,通过Relief-F算法对特征向量各元素进行权重估计,构造一个最优权重特征向量,增大不同运动模式间特征向量的差异性,采用支持向量机作为分类器,可识别站立、走、跑、跳、跌倒、上楼、下楼7种运动模式。实验表明,所提出的算法能够准确识别多种运动模式,识别精度可达94.1%。