论文部分内容阅读
采用灰色关联分析法筛选出江西省铁路货物周转量的主要影响因素,在此基础上建立了BP神经网络预测模型,并采用多元线性回归模型、二次指数平滑法、灰色GM(1,1)模型分别对江西省铁路货物周转量进行预测,再对结果进行比较和误差分析。研究表明,BP神经网络模型预测精度明显高于其它三个模型,平均误差为0.76%,可用于实际预测。