论文部分内容阅读
将U变换法推广应用于Reissner矩形板的有限元分析中.对原结构进行等效变换,形成周期循环的板单元,使刚度矩阵成为循环矩阵,应用双重U变换解耦了有限元的矩阵方程,使有限元计算只须在一个板单元上进行,并且仍能方便分析整个板的一般分布载荷.所发展的U变换.有限元法不仅提高了计算效率,很快收敛于精确解,对于简支板还给出了精确分析的有限元解、准确的误差估计表达式和收敛速度,可以直接掌控计算精度,这是其它方法难以得到的.对简支和固支矩形板的数值算例及与其它方法的对比说明了U变换-有限元法的优点和重要的工程实用价值