论文部分内容阅读
信号的特征提取和模式识别方法,在实现准确的电子鼻气体定性分析中尤为关键,本文提出了基于AR信号处理和KII模型的嗅觉识别算法.将传感器信号分为:上升期和稳定期两部分,对上升期信号提取斜率作为特征;对稳定期信号,进行AR建模来提取特征.在电子鼻的模式识别算法上,利用KII模型对气味信号进行分类.该方法充分利用了AR信号处理在信号表示方面的有效性及降维优势、KII模型在模式识别方面的优越性.仿真将该方法与BP网络、AR—BP算法及单KII网络进行了比较,结果表明,AR信号处理技术可以很好的提取特征,并与KII