论文部分内容阅读
针对单一特征存在的缺陷和目标快速变化时易跟丢的问题,提出了一种结合学习率调整的自适应特征融合相关滤波跟踪算法。算法采用互补的梯度特征和颜色特征进行特征融合,通过计算滤波响应的大小来决定下一帧在融合特征中各自所占的权重,凸显优势特征,使目标与背景更具区分度。提取目标后需要更新滤波器,为了避免滤波器跟不上目标变化的情况发生,引入学习率调整机制,使滤波器更新速度能够随目标外观变化进行在线调整。因此,相较同类特征融合算法,本算法准确高效,且对于快速形变目标的鲁棒性更强。实验证明,本算法在精度和成功率上都比现有相关滤波算法更优,具有一定的应用价值。