论文部分内容阅读
Basic vegetative period(BVP) is an important trait for determining flowering time and adaptation to variable environments.A short BVP barley mutant is about 30 d shorter than its wild type.Genetic analysis using 557 F 2 individuals revealed that the short BVP is governed by a single recessive gene(BVP-1) and was further validated in 2 090 F 3 individuals.The BVP-1 gene was first mapped to barley chromosome 1H using SSR markers.Comparative genomic analysis demonstrated that the chromosome region of BVP-1 is syntenic to rice chromosome 5 and Brachypodium chromosome 2.Barley ESTs/genes were identified after comparison with candidate genes in rice and Brachypodium;seven new gene-specific markers were developed and mapped in the mapping populations.The BVP-1 gene co-segregated with the Mot1 and Ftsh4 genes and was flanked by the gene-specific markers AK252360(0.2 cM) and CA608558(0.5 cM).Further analysis demonstrated that barley and wheat share the same short BVP gene controlling early flowering.
Basic vegetative period (BVP) is an important trait for determining flowering time and adaptation to variable environments. A short BVP barley mutant is about 30 d shorter than its wild type. Genetic analysis using 557 F 2 individuals revealed that the short BVP is governed by a single recessive gene (BVP-1) and was further validated in 2 090 F3 individuals.The BVP-1 gene was first mapped to barley chromosome 1H using SSR markers. Comparative genomic analysis of that the chromosome region of BVP-1 is syntenic to rice chromosome 5 and Brachypodium chromosome 2. Barley ESTs / genes were identified after comparison with candidate genes in rice and Brachypodium; seven new gene-specific markers were developed and mapped in the mapping populations. The BVP-1 gene co-segregated with the Mot1 and Ftsh4 genes and was flanked by the gene-specific markers AK252360 (0.2 cM) and CA608558 (0.5 cM). Fermentation analysis of barley and wheat share the same short BVP gene controlling early flow ering.