论文部分内容阅读
针对网络舆情数据随机波动大、原始样本少的特点,对网络舆情短期预测方法开展研究。基于混沌理论对原始样本进行相空间重构,确定了最佳延迟时间和嵌入维数。采用LS-SVM对网络舆情数据进行回归建模,基于粒子群算法对LS-SVM参数进行优化,避免了核函数参数选择的主观性和盲目性。以某网络事件点击量预测为案例进行了仿真实验。结果表明:所提方法具有预测精度高、能确定最佳模型参数的优点,从而验证了所提方法的科学性和先进性。