基于叠层扫描成像技术的成像透镜透射波前测量方法

来源 :中国激光 | 被引量 : 3次 | 上传用户:mym890419
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
将叠层扫描成像技术(ePIE)用于成像透镜透射波前的高精度测量。将透镜的透射光束照射至一个固定于二维扫描台的衍射物上,并在其后的探测器上形成衍射光斑,扫描台横向扫描并记录衍射物在每个位置所形成的衍射光斑,采用ePIE精确重建衍射物体的光场复振幅,并据此反演出透镜后表面的透射光波前;移去透镜后重复上述步骤,可以重建入射到透镜上的光束波前;将透射波前减去入射波前即可得到透镜的透射波前。该方法具有准确性高、结构简单、成本低廉等优点。
其他文献
高倍率显微物镜具有小视场短焦距的特点,但利用常规测量方法难以准确测定其焦距。采用了一种基于放大率法多次基准传递的方法对高倍率显微物镜的焦距进行准确测定。该方法的原理是采用放大倍率法测试一枚远场共轭设计的低倍率显微物镜,获得该物镜的焦距,然后以此低倍率物镜测试高倍率显微物镜。利用该测试方法对一枚标称焦距为4 mm Nikon金相物镜进行了测试,并分析了测试误差,测试精度为0.0266 mm,相对标准差为0.664%。发现用于基准传递的物镜的选择会影响最终的测试精度,从理论上分析了选取合适基准物镜的标准。
This paper reviews and introduces the techniques for boosting the light-extraction efficiency (LEE) of AlGaN-based deep-ultraviolet (
期刊
针对空间目标地基自适应光学望远镜成像过程中同时记录目标图像及波前传感器数据的情形,提出了一种利用波前测量数据的空间目标自适应光学图像复原方法。该方法将大气降质波前表示为望远镜孔径内的二元单纯形样条函数,而非传统的Zernike模式的线性组合,基于该区域表示,为哈特曼-夏克波前传感器建立了平均斜率测量模型,进而非适定的波前重构问题转化为良态等式约束最小二乘问题,最终的目标图像即可通过非盲解卷积方法获
本文计算了mm2型—水甲酸锂晶体的相位匹配角和有效非线性系数随基波波长变化的规律。发现对每个基波都存在着一个或两个最佳相位匹配角(θ,φ),并作出了θ,φ随基波波长变化的拟合公式。按计算所得的角度切割的—水甲酸锂倍频元件分别得到了0.53μ、0.35μ和0.266μ的倍频光.
期刊
太赫兹时域光谱技术(THz-TDS)结合主成分分析-线性判别分析(PCA-LDA)和支持向量机(SVM)用于正品大黄样品的鉴定。 在时域测量41个大黄样品的太赫兹时域透射光谱, 然后将这些时域信号转换成频域的吸收系数系数。 根据样本的吸收系数建立了主成分分析-线性判别分析和支持向量机的定性分类模型, 并对正品和非正品大黄样本的分类模型进行了交叉验证。 模型的预测能力和稳定性使用自助拉丁配分进行评价, 使用50次自助拉丁配分, 配分数为4。 使用主成分分析-线性判别分析和支持向量机均得到了满意的结果。 提出
Based on Lee-Low-Pines (LLP) unitary transformation, this article adopts the variational method of the Pekar type and gets the energy and wave functions of the ground state and the first excited state of strong-coupling bipolaron in two-dimensional quantu
期刊
High speed pseudorandom modulation and photon counting techniques are applied to a three-dimensional imaging lidar system. The specific structure and working principle of the lidar system is described. The actual detector efficiency of a single-photon det
期刊
采用分步迭代算法对简化的包层模式本征方程进行数值求解, 这种方法由机器选取初值, 整个过程无需人工干预, 核心代码只需几十行且计算速度快, 可求解任意环境折射率下各次包层模式的有效折射率(包括实数解和复数解), 从而可在很宽的范围内对长周期光纤光栅(LPG)的折射率特性进行数值仿真。与实验结果进行了对比, 证明了该算法对求解拥有多个复数根的超复杂超越方程是一种比较有效的方法, 这对于应用该算法研究更多包层光栅及镀膜光纤光栅的其他特性具有一定的意义。
激光冲击处理(LSP)(或激光喷丸强化)是利用激光冲击波压力对材料表面实施强化处理的一种新型表面处理技术。经激光冲击后,残余压应力在材料表面和深度方向上的分布和大小是评价激光冲击效果的一个重要指标,而有限元模拟(FEM)是预测激光冲击处理后残余应力场分布和大小的一种有效方法。在利用ABAQUS软件对激光冲击处理6061-T6铝合金进行数值分析时,讨论了有限元模型、材料性能、冲击加载方式、分析时间等关键问题的处理方法,并分析了激光冲击后残余应力场的分布特点,最后利用有限元模拟考察了激光冲击次数对残余应力场的