论文部分内容阅读
针对目标跟踪在遮挡和光照变化等复杂场景下容易跟踪失败的问题,提出一种高精度鲁棒的目标跟踪算法。首先,将基于边缘信息的目标模型、基于梯度直方图(HOG)特征的滤波器模型和基于颜色直方图的颜色模型融合为更准确和鲁棒性更强的跟踪模型;然后,提出基于特征分数的双重跟踪可靠性判断依据,检测跟踪结果的可靠性;最后,在跟踪结果可靠性较低时,采用粒子滤波、稀疏表示以及距离约束定位进行重新检测,以实现持续稳定的跟踪。算法在OTB-2015数据集上的平均重叠精度为78. 2%,平均中心位置误差为23. 1 pixel,