论文部分内容阅读
为寻找一种快速且高识别率的手势识别方法,提出一种基于改进的概率神经网络手势识别算法。该算法采用K-W检验方法实现sEMG(Surface-Myoelectrogram Gestures)的特征选择,利用粒子群优化方法对传播率参数进行优化。在7种手部姿势识别的实验中,该算法平均正确识别率均在90%以上,而传统BP算法的正确率仅为85.7%。仿真实验结果表明,改进的概率神经网络算法具有更短的训练时间和更强的分类能力。