论文部分内容阅读
该文介绍了神经网络模型在垃圾邮件过滤中的应用。首先对通过浏览器收集到的邮件进行分析,将其转换为HTML源代码的形式,再根据HTML语言的特点对其进行特征提取,从而达到邮件预处理的目的。随后又采用LVQ神经网络建立分类器模型,以达到最终分离正常邮件(ham)和垃圾邮件(spam)的目的,对比实验表明,结合HTML代码的特征提取和LVQ神经网络的分类器模型效果更好。