论文部分内容阅读
定理 设a,b,c为非负实数,记P=∑a3=a3+b3+c3,Q=∏a=abc,R=∑bc(b+c)=a2b+ab2+b2c+bc2+c2a+ca2,则 2P≥P+3Q≥R≥6Q.①证明:第一个不等式显然;由abc≥(b+c-a)(c+a-b)(a+b-?
Theorem Let a, b, and c be non-negative real numbers, and remember that P=∑a3=a3+b3+c3,Q=∏a=abc,R=∑bc(b+c)=a2b+ab2+b2c+bc2+c2a+ca2, then 2P≥P+3Q≥R≥6Q. 1 Proof: The first inequality is obvious; from abc≥(b+c-a)(c+a-b)(a+b-?