论文部分内容阅读
【摘 要】 初中数学学习要从几个方向着手,一般认为数学学习注重数学思想的领悟。传统意义上认为,学习数学就是记忆数学概念,然后进行大量的练习加以巩固。而全新的数学教学方法则提倡通过掌握数学思想的方式进行数学学科的学习。
【关键词】 初中数学 数学思想 方法探究
数学的教学一直是一个比较大的难题,数学学科概念简明难懂,公式繁多,而且数学思想方法是决定数学教学效果的重要因素。就目前教学形式来看,初中数学的教学的主要重点就在于如何传授给学生们数学思想方法。在掌握数学思想方法的基础上进行数学学科的学习,能够获得更好的效果,并真正意义上学好数学。本文针对当前数学的教学模式,并总结初中教学中常见的数学思想方法,以此作为基础,进行数学思想方法的探究。对于学好初中数学的意义还是非常大的。
一、初中数学常见的数学思想探究
对于初中数学而言,其包含的数学思想还是比较丰富的。通常意义上认为,初中数学的数学思想一般包括:数形结合思想、方程与函数思想、分类讨论思想以及转化思想等等。这些数学思想是在长期的教学与学习中总结出来的,对于学习数学有非常大的帮助。
1、对于数形结合的数学思想的掌握。数形结合是一种非常常用的数学思想,尤其是对未来高中的函数学习有非常大的帮助。所谓数形结合,简而言之就是将数字与图像进行结合起来。因为对于学生们而言,形象的图像显示更容易去分析与解答。因此,利用数形结合,实际上就是用图像将数学中的数字信息标注出来,或者是形象化的展示出来。数形结合应用最为广泛的就是函数的解答,在初中数学中涉及的函数还是比较简单的。但是还是建议教师在对学生们进行数形结合思想的教学中,能够更多的去培养学生们数形结合的方法。为以后高中数学中的函数问题打下坚实的基础。除了对于函数的数形结合的思想教学以外,很多数学问题都可以采用数形结合的方式进行。因此,数形结合的思想可以应用于大多数的数学试题的求解,并能够通过图像的方式,将枯燥、抽象的数学试题形象化,直观化。在解题的过程中,能够培养学生们的形象思维,不仅有利于解题的规范性,更能够促进好的学习数学的习惯养成。
2、方程与函数的数学思想。方程与函数是初中数学教学重点也是教学难点。在没有接触方程与函数的时候,需要给初中学生们一种形象的概念,以此作为切入点,让学生们去领悟这一新的概念。方程实际上就是已知与未知之间的对等关系,通过一定的等量关系,利用已知的数值去求解未知的数值的过程。而函数往往会与图像进行关联,在进行函数学习的时候可以与上文中提到的数形结合的数学思想进行结合式学习,更能够做到融会贯通的目的。方程的思想在初中数学中应用的非常广泛,尤其是应用题目,这样题目的解答基本都是依靠方程的思想进行解答的。
3、分类讨论思想以及转化思想。在教学中主要体现在复习或者是阶段性总结知识的过程中得以体现。分类讨论主要是为了能够将题目中的问题进行分类处理,然后彼此之间相对独立。这样做的好处在于将复杂问题简单化,可以避开题目中其他因素的干扰,从而在某一方面进行问题的求解,然后再进行综合性思考与解答。转化思想的应用对于数学而言,更加重要。转化实际上是一种将复杂问题简单化,或者是将抽象问题具体化的一个过程。相对而言,这种数学思想在掌握上更加困难,对于初中生而言,掌握不是那么顺利,需要更多的实际问题解决中找到答案。
总体而言,初中数学的数学思想主要以数形结合思想、方程与函数思想、分类讨论思想以及转化思想为主。而数形结合是最简单而基础的数学思想,方程与函数则是在基础上更加方便解题的数学思想。分类与转化则需要学生们付出更多的努力才能够真正掌握的一个数学思想。
二、初中数学常见的数学方法探究
初中数学中,常见的数学方法比较多,而且这些方法多存在于解题中。一般认为,较为常见的数学方法有:配方法,换元法,消元法,待定系数法。这些方法应用最多的地方就是解方程,方程中的未知数往往需要这些方法。初中数学中,很重要的一个知识部分就是因式分解。这一部分属于初中数学的基础部分,为以后的解方程打下了非常坚实的基础。所以,配方法就是因式分解这一部分的重要方法。掌握好配方法就能够在一定程度上学好因式分解,并能够为以后的方程求解打下良好的基础。而消元法其实是在方程求解中非常重要的方法,一般应用于二元方程化解为一元方程的方法之一。在求解二元方程的时候,往往通过题目中的某种关系,将二元化为一元,这样就可以通过一个等式解出未知数的数值。在求解二元方程的时候,消元法与换元法往往同时使用,就能够使二元化成一元,然后通过一次等式就可以求解结果。总之,数学方法的运用要在实际解题中不断总结与归纳,不能拘泥于一种方法,组要多种方法同时使用,以此达到解题的目的。
三、结语
数学能力的培养是一个漫长的过程,需要我们注重平时教学中的点滴,利用可以利用的手段,调动一切可以调动的积极因素,不失时机的培养学生的各方面能力。
新课程理念和科学的数学观对教师实施数学教学提出了更高的要求,而我们至今仍处于“素质教育”与“应试教育”的两难境地之中。但是,我们只要具有新课程理念与科学的数学观,拥有较强的数学教学创新实践能力,就一定会有信心有能力在追求学生数学学习成绩与素质提升之间实现最佳平衡。
【关键词】 初中数学 数学思想 方法探究
数学的教学一直是一个比较大的难题,数学学科概念简明难懂,公式繁多,而且数学思想方法是决定数学教学效果的重要因素。就目前教学形式来看,初中数学的教学的主要重点就在于如何传授给学生们数学思想方法。在掌握数学思想方法的基础上进行数学学科的学习,能够获得更好的效果,并真正意义上学好数学。本文针对当前数学的教学模式,并总结初中教学中常见的数学思想方法,以此作为基础,进行数学思想方法的探究。对于学好初中数学的意义还是非常大的。
一、初中数学常见的数学思想探究
对于初中数学而言,其包含的数学思想还是比较丰富的。通常意义上认为,初中数学的数学思想一般包括:数形结合思想、方程与函数思想、分类讨论思想以及转化思想等等。这些数学思想是在长期的教学与学习中总结出来的,对于学习数学有非常大的帮助。
1、对于数形结合的数学思想的掌握。数形结合是一种非常常用的数学思想,尤其是对未来高中的函数学习有非常大的帮助。所谓数形结合,简而言之就是将数字与图像进行结合起来。因为对于学生们而言,形象的图像显示更容易去分析与解答。因此,利用数形结合,实际上就是用图像将数学中的数字信息标注出来,或者是形象化的展示出来。数形结合应用最为广泛的就是函数的解答,在初中数学中涉及的函数还是比较简单的。但是还是建议教师在对学生们进行数形结合思想的教学中,能够更多的去培养学生们数形结合的方法。为以后高中数学中的函数问题打下坚实的基础。除了对于函数的数形结合的思想教学以外,很多数学问题都可以采用数形结合的方式进行。因此,数形结合的思想可以应用于大多数的数学试题的求解,并能够通过图像的方式,将枯燥、抽象的数学试题形象化,直观化。在解题的过程中,能够培养学生们的形象思维,不仅有利于解题的规范性,更能够促进好的学习数学的习惯养成。
2、方程与函数的数学思想。方程与函数是初中数学教学重点也是教学难点。在没有接触方程与函数的时候,需要给初中学生们一种形象的概念,以此作为切入点,让学生们去领悟这一新的概念。方程实际上就是已知与未知之间的对等关系,通过一定的等量关系,利用已知的数值去求解未知的数值的过程。而函数往往会与图像进行关联,在进行函数学习的时候可以与上文中提到的数形结合的数学思想进行结合式学习,更能够做到融会贯通的目的。方程的思想在初中数学中应用的非常广泛,尤其是应用题目,这样题目的解答基本都是依靠方程的思想进行解答的。
3、分类讨论思想以及转化思想。在教学中主要体现在复习或者是阶段性总结知识的过程中得以体现。分类讨论主要是为了能够将题目中的问题进行分类处理,然后彼此之间相对独立。这样做的好处在于将复杂问题简单化,可以避开题目中其他因素的干扰,从而在某一方面进行问题的求解,然后再进行综合性思考与解答。转化思想的应用对于数学而言,更加重要。转化实际上是一种将复杂问题简单化,或者是将抽象问题具体化的一个过程。相对而言,这种数学思想在掌握上更加困难,对于初中生而言,掌握不是那么顺利,需要更多的实际问题解决中找到答案。
总体而言,初中数学的数学思想主要以数形结合思想、方程与函数思想、分类讨论思想以及转化思想为主。而数形结合是最简单而基础的数学思想,方程与函数则是在基础上更加方便解题的数学思想。分类与转化则需要学生们付出更多的努力才能够真正掌握的一个数学思想。
二、初中数学常见的数学方法探究
初中数学中,常见的数学方法比较多,而且这些方法多存在于解题中。一般认为,较为常见的数学方法有:配方法,换元法,消元法,待定系数法。这些方法应用最多的地方就是解方程,方程中的未知数往往需要这些方法。初中数学中,很重要的一个知识部分就是因式分解。这一部分属于初中数学的基础部分,为以后的解方程打下了非常坚实的基础。所以,配方法就是因式分解这一部分的重要方法。掌握好配方法就能够在一定程度上学好因式分解,并能够为以后的方程求解打下良好的基础。而消元法其实是在方程求解中非常重要的方法,一般应用于二元方程化解为一元方程的方法之一。在求解二元方程的时候,往往通过题目中的某种关系,将二元化为一元,这样就可以通过一个等式解出未知数的数值。在求解二元方程的时候,消元法与换元法往往同时使用,就能够使二元化成一元,然后通过一次等式就可以求解结果。总之,数学方法的运用要在实际解题中不断总结与归纳,不能拘泥于一种方法,组要多种方法同时使用,以此达到解题的目的。
三、结语
数学能力的培养是一个漫长的过程,需要我们注重平时教学中的点滴,利用可以利用的手段,调动一切可以调动的积极因素,不失时机的培养学生的各方面能力。
新课程理念和科学的数学观对教师实施数学教学提出了更高的要求,而我们至今仍处于“素质教育”与“应试教育”的两难境地之中。但是,我们只要具有新课程理念与科学的数学观,拥有较强的数学教学创新实践能力,就一定会有信心有能力在追求学生数学学习成绩与素质提升之间实现最佳平衡。