论文部分内容阅读
在系统模型误差和噪声统计特性未知时,为防止滤波发散和提高系统的实时性,提出了一种模糊自适应Kalman滤波算法。该算法利用滤波异常判据获得一个滤波状态因子,进而利用模糊推理系统在线调整量测噪声协方差阵的值,使滤波实现自适应。将该算法应用到惯导/双星组合导航系统中,并和简化的Sage-Husa自适应滤波算法进行仿真比较。仿真结果表明:在滤波精度相当的情况下,该算法简化了运算,提高了实时性。