论文部分内容阅读
基于解释结构模型法对区域高耗能行业的大用户行为属性展开分析,提取关键行为属性;通过多因素方差分析找出影响因素的显著性结果。然后构建了最小向量支持向量机(LS—SVM)智能预测模型,以冀北地区为例,在考虑钢铁价格和产量2种用户行为因素的基础上,对区域钢铁行业用电量进行预测。研究结果表明,钢铁行业的钢铁价格及产量与行业用电量的相关性较强,对其影响较大,在对钢铁行业用电量进行预测时应考虑钢铁价格和产量2种因素。LS—SVM智能预测结果表明,该模型具有良好的有效性和可行性,有助于正确判断区域行业用电量变化趋势。