论文部分内容阅读
为了挖掘大型数据库中的最大频繁项集,为其建立了非线性优化模型,并给出一种朴素蚁群算法求解。该算法只需要扫描一次数据库,不使用启发式信息而采用朴素信息素模型,即信息素释放在与每个项关联的有两个边上,从而将边与项紧密联系起来,既构建了蚁群的路径,又挖掘最大频繁项集。采用与问题紧密相关的局部更新、全局更新和局部搜索机制。理论分析和对比实验结果表明了该算法的有效性。