论文部分内容阅读
利用BP神经网络对被控对象进行了控制和辨识,提出了一种基于BP神经网络的PID控制器;给出了相应的控制算法;并对典型的参数时变非线性系统的控制进行了仿真研究。仿真结果表明,同传统PID控制器相比,神经网络PID控制器对于模型、环境具有较好的适应能力与较强的鲁棒性,证明了神经网络控制的优越性。